57,057 research outputs found

    IntRepair: Informed Repairing of Integer Overflows

    Full text link
    Integer overflows have threatened software applications for decades. Thus, in this paper, we propose a novel technique to provide automatic repairs of integer overflows in C source code. Our technique, based on static symbolic execution, fuses detection, repair generation and validation. This technique is implemented in a prototype named IntRepair. We applied IntRepair to 2,052C programs (approx. 1 million lines of code) contained in SAMATE's Juliet test suite and 50 synthesized programs that range up to 20KLOC. Our experimental results show that IntRepair is able to effectively detect integer overflows and successfully repair them, while only increasing the source code (LOC) and binary (Kb) size by around 1%, respectively. Further, we present the results of a user study with 30 participants which shows that IntRepair repairs are more than 10x efficient as compared to manually generated code repairsComment: Accepted for publication at the IEEE TSE journal. arXiv admin note: text overlap with arXiv:1710.0372

    Multi-Tier Annotations in the Verbmobil Corpus

    Get PDF
    In very large and diverse scientific projects where as different groups as linguists and engineers with different intentions work on the same signal data or its orthographic transcript and annotate new valuable information, it will not be easy to build a homogeneous corpus. We will describe how this can be achieved, considering the fact that some of these annotations have not been updated properly, or are based on erroneous or deliberately changed versions of the basis transcription. We used an algorithm similar to dynamic programming to detect differences between the transcription on which the annotation depends and the reference transcription for the whole corpus. These differences are automatically mapped on a set of repair operations for the transcriptions such as splitting compound words and merging neighbouring words. On the basis of these operations the correction process in the annotation is carried out. It always depends on the type of the annotation as well as on the position and the nature of the difference, whether a correction can be carried out automatically or has to be fixed manually. Finally we present a investigation in which we exploit the multi-tier annotations of the Verbmobil corpus to find out how breathing is correlated with prosodic-syntactic boundaries and dialog acts. 1

    MintHint: Automated Synthesis of Repair Hints

    Full text link
    Being able to automatically repair programs is an extremely challenging task. In this paper, we present MintHint, a novel technique for program repair that is a departure from most of today's approaches. Instead of trying to fully automate program repair, which is often an unachievable goal, MintHint performs statistical correlation analysis to identify expressions that are likely to occur in the repaired code and generates, using pattern-matching based synthesis, repair hints from these expressions. Intuitively, these hints suggest how to rectify a faulty statement and help developers find a complete, actual repair. MintHint can address a variety of common faults, including incorrect, spurious, and missing expressions. We present a user study that shows that developers' productivity can improve manyfold with the use of repair hints generated by MintHint -- compared to having only traditional fault localization information. We also apply MintHint to several faults of a widely used Unix utility program to further assess the effectiveness of the approach. Our results show that MintHint performs well even in situations where (1) the repair space searched does not contain the exact repair, and (2) the operational specification obtained from the test cases for repair is incomplete or even imprecise

    Automatic Software Repair: a Bibliography

    Get PDF
    This article presents a survey on automatic software repair. Automatic software repair consists of automatically finding a solution to software bugs without human intervention. This article considers all kinds of repairs. First, it discusses behavioral repair where test suites, contracts, models, and crashing inputs are taken as oracle. Second, it discusses state repair, also known as runtime repair or runtime recovery, with techniques such as checkpoint and restart, reconfiguration, and invariant restoration. The uniqueness of this article is that it spans the research communities that contribute to this body of knowledge: software engineering, dependability, operating systems, programming languages, and security. It provides a novel and structured overview of the diversity of bug oracles and repair operators used in the literature

    Automated Workarounds from Java Program Specifications based on SAT Solving

    Get PDF
    The failures that bugs in software lead to can sometimes be bypassed by the so-called workarounds: when a (faulty) routine fails, alternative routines that the system offers can be used in place of the failing one, to circumvent the failure. Existing approaches to workaround-based system recovery consider workarounds that are produced from equivalent method sequences, automatically computed from user-provided abstract models, or directly produced from user-provided equivalent sequences of operations. In this paper, we present two techniques for computing workarounds from Java code equipped with formal specifications, that improve previous approaches in two respects. First, the particular state where the failure originated is actively involved in computing workarounds, thus leading to repairs that are more state specific. Second, our techniques automatically compute workarounds on concrete program state characterizations, avoiding abstract software models and user-provided equivalences. The first technique uses SAT solving to compute a sequence of methods that is equivalent to a failing method on a specific failing state, but which can also be generalized to schemas for workaround reuse. The second technique directly exploits SAT to circumvent a failing method, building a state that mimics the (correct) behaviour of a failing routine, from a specific program state too. We perform an experimental evaluation based on case studies involving implementations of collections and a library for date arithmetic, showing that the techniques can effectively compute workarounds from complex contracts in an important number of cases, in time that makes them feasible to be used for run-time repairs. Our results also show that our state-specific workarounds enable us to produce repairs in many cases where previous workaround-based approaches are inapplicable.Fil: Uva, Marcelo Ariel. Universidad Nacional de Río Cuarto; ArgentinaFil: Ponzio, Pablo Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina. Universidad Nacional de Río Cuarto; ArgentinaFil: Regis, Germán. Universidad Nacional de Río Cuarto; ArgentinaFil: Aguirre, Nazareno Matias. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina. Universidad Nacional de Río Cuarto; ArgentinaFil: Frias, Marcelo Fabian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina. Instituto Tecnológico de Buenos Aires; Argentin
    corecore