4,622 research outputs found

    Flexible Memory Protection with Dynamic Authentication Trees

    Get PDF
    As computing appliances increase in use and handle more critical information and functionalities, the importance of security grows even greater. In cases where the device processes sensitive data or performs important functionality, an attacker may be able to read or manipulate it by accessing the data bus between the processor and memory itself. As it is impossible to provide physical protection to the piece of hardware in use, it is important to provide protection against revealing confidential information and securing the device\u27s intended operation. Defense against bus attacks such as spoofing, splicing, and replay attacks are of particular concern. Traditional memory authentication techniques, such as hashes and message authentication codes, are costly when protecting off-chip memory during run-time. Balanced authentication trees such as the well-known Merkle tree or TEC-Tree are widely used to reduce this cost. While authentication trees are less costly than conventional techniques it still remains expensive. This work proposes a new method of dynamically updating an authentication tree structure based on a processor\u27s memory access pattern. Memory addresses that are more frequently accessed are dynamically shifted to a higher tree level to reduce the number of memory accesses required to authenticate that address. The block-level AREA technique is applied to allow for data confidentiality with no additional cost. An HDL design for use in an FPGA is provided as a transparent and highly customizable AXI-4 memory controller. The memory controller allows for data confidentiality and authentication for random-access memory with different speed or memory size constraints. The design was implemented on a Zynq 7000 system-on-chip using the processor to communicate with the hardware design. The performance of the dynamic tree design is comparable to the TEC-Tree in several memory access patterns. The TEC-Tree performs better than a dynamic design in particular applications; however, speedup over the TEC-Tree is possible to achieve when applied in scenarios that frequently accessed previously processed data

    HMT: A Hardware-Centric Hybrid Bonsai Merkle Tree Algorithm for High-Performance Authentication

    Full text link
    Bonsai Merkle tree (BMT) is a widely used data structure for authenticating data/metadata in a secure computing system. However, the predominantly recursive andsequential nature of traditional BMT algorithms make them challenging to implement with Field-Programmable Gate Array (FPGA) in modern heterogeneous computing platforms. In this work, we introduce HMT, a hardware-friendly implementation methodology for BMT that enables the verification and update processes to function independently, as well as saves additional write-backs by making the update conditions more flexible compared to previous algorithms. The methodology of HMT contributes both novel algorithm revisions and innovative hardware techniques to implementing BMT. Our empirical performance measurements have demonstrated that HMT can achieve up to 7x improvement in bandwidth and 4.5x reduction in latency over the baseline

    Advanced flight control system study

    Get PDF
    A fly by wire flight control system architecture designed for high reliability includes spare sensor and computer elements to permit safe dispatch with failed elements, thereby reducing unscheduled maintenance. A methodology capable of demonstrating that the architecture does achieve the predicted performance characteristics consists of a hierarchy of activities ranging from analytical calculations of system reliability and formal methods of software verification to iron bird testing followed by flight evaluation. Interfacing this architecture to the Lockheed S-3A aircraft for flight test is discussed. This testbed vehicle can be expanded to support flight experiments in advanced aerodynamics, electromechanical actuators, secondary power systems, flight management, new displays, and air traffic control concepts
    corecore