64,546 research outputs found

    An optimal transportation routing approach using GIS-based dynamic traffic flows

    Full text link
    This paper examines the value of real-time traffic information gathered through Geographic Information Systems for achieving an optimal vehicle routing within a dynamically stochastic transportation network. We present a systematic approach in determining the dynamically varying parameters and implementation attributes that were used for the development of a Web-based transportation routing application integrated with real-time GIS services. We propose and implement an optimal routing algorithm by modifying Dijkstra’s algorithm in order to incorporate stochastically changing traffic flows. We describe the significant features of our Web application in making use of the real-time dynamic traffic flow information from GIS services towards achieving total costs savings and vehicle usage reduction. These features help users and vehicle drivers in improving their service levels and productivity as the Web application enables them to interactively find the optimal path and in identifying destinations effectively

    Learning algorithms for the control of routing in integrated service communication networks

    Get PDF
    There is a high degree of uncertainty regarding the nature of traffic on future integrated service networks. This uncertainty motivates the use of adaptive resource allocation policies that can take advantage of the statistical fluctuations in the traffic demands. The adaptive control mechanisms must be 'lightweight', in terms of their overheads, and scale to potentially large networks with many traffic flows. Adaptive routing is one form of adaptive resource allocation, and this thesis considers the application of Stochastic Learning Automata (SLA) for distributed, lightweight adaptive routing in future integrated service communication networks. The thesis begins with a broad critical review of the use of Artificial Intelligence (AI) techniques applied to the control of communication networks. Detailed simulation models of integrated service networks are then constructed, and learning automata based routing is compared with traditional techniques on large scale networks. Learning automata are examined for the 'Quality-of-Service' (QoS) routing problem in realistic network topologies, where flows may be routed in the network subject to multiple QoS metrics, such as bandwidth and delay. It is found that learning automata based routing gives considerable blocking probability improvements over shortest path routing, despite only using local connectivity information and a simple probabilistic updating strategy. Furthermore, automata are considered for routing in more complex environments spanning issues such as multi-rate traffic, trunk reservation, routing over multiple domains, routing in high bandwidth-delay product networks and the use of learning automata as a background learning process. Automata are also examined for routing of both 'real-time' and 'non-real-time' traffics in an integrated traffic environment, where the non-real-time traffic has access to the bandwidth 'left over' by the real-time traffic. It is found that adopting learning automata for the routing of the real-time traffic may improve the performance to both real and non-real-time traffics under certain conditions. In addition, it is found that one set of learning automata may route both traffic types satisfactorily. Automata are considered for the routing of multicast connections in receiver-oriented, dynamic environments, where receivers may join and leave the multicast sessions dynamically. Automata are shown to be able to minimise the average delay or the total cost of the resulting trees using the appropriate feedback from the environment. Automata provide a distributed solution to the dynamic multicast problem, requiring purely local connectivity information and a simple updating strategy. Finally, automata are considered for the routing of multicast connections that require QoS guarantees, again in receiver-oriented dynamic environments. It is found that the distributed application of learning automata leads to considerably lower blocking probabilities than a shortest path tree approach, due to a combination of load balancing and minimum cost behaviour

    Dynamic Vehicular Route Guidance Using Traffic Prediction Information

    Get PDF
    We propose a dynamic vehicular routing algorithm with traffic prediction for improved routing performance. The primary idea of our algorithm is to use real-time as well as predictive traffic information provided by a central routing controller. In order to evaluate the performance, we develop a microtraffic simulator that provides road networks created from real maps, routing algorithms, and vehicles that travel from origins to destinations depending on traffic conditions. The performance is evaluated by newly defined metric that reveals travel time distributions more accurately than a commonly used metric of mean travel time. Our simulation results show that our dynamic routing algorithm with prediction outperforms both Static and Dynamic without prediction routing algorithms under various traffic conditions and road configurations. We also include traffic scenarios where not all vehicles comply with our dynamic routing with prediction strategy, and the results suggest that more than half the benefit of the new routing algorithm is realized even when only 30% of the vehicles comply

    Dynamic routing on stochastic time-dependent networks using real-time information

    Get PDF
    In just-in-time (JIT) manufacturing environments, on-time delivery is one of the key performance measures for dispatching and routing of freight vehicles. Both the travel time delay and its variability impact the efficiency of JIT logistics operations, that are becoming more and more common in many industries, and in particular, the automotive industry. In this dissertation, we first propose a framework for dynamic routing of a single vehicle on a stochastic time dependent transportation network using real-time information from Intelligent Transportation Systems (ITS). Then, we consider milk-run deliveries with several pickup and delivery destinations subject to time windows under same network settings. Finally, we extend our dynamic routing models to account for arc traffic condition dependencies on the network. Recurrent and non-recurrent congestion are the two primary reasons for travel time delay and variability, and their impact on urban transportation networks is growing in recent decades. Hence, our routing methods explicitly account for both recurrent and non-recurrent congestion in the network. In our modeling framework, we develop alternative delay models for both congestion types based on historical data (e.g., velocity, volume, and parameters for incident events) and then integrate these models with the forward-looking routing models. The dynamic nature of our routing decisions exploits the real-time information available from various ITS sources, such as loop sensors. The forward-looking traffic dynamic models for individual arcs are based on congestion states and state transitions driven by time-dependent Markov chains. We propose effective methods for estimation of the parameters of these Markov chains. Based on vehicle location, time of day, and current and projected network congestion states, we generate dynamic routing policies using stochastic dynamic programming formulations. All algorithms are tested in simulated networks of Southeast-Michigan and Los Angeles, CA freeways and highways using historical traffic data from the Michigan ITS Center, Traffic.com, and Caltrans PEMS

    Feedback Control Theory for Dynamic Traffic Assignment

    Full text link
    Traditionally, traffic assignment and traffic control in general have mostly been performed using optimisation techniques which do not lend themselves to real-time control. This volume presents feedback control techniques for performing traffic assignment in real-time, where traffic diversion control variables are instantaneous functions of sensed traffic variables. The authors outline the whole theory behind Intelligent Transportation Systems (ITS) which allows traffic variables to be sensed in real time and microprocessors to use the sensed traffic variable input to perform the traffic actuation tasks. They show h ow to design feedback controllers to perform dynamic traffic routing and assignment, and present the theory of feedback control as applied to this problem, with many new approaches for solving it. Not only is the theory presented but a wide range of information on applications in terms of simulations and deployment

    Monitoring Traffic and Emissions by Floating Car Data

    Get PDF
    Intelligent traffic management is widely acknowledged as a means to optimise the utilisation of existing infrastructure capacities. A major requirement for intelligent traffic management is the collection of high quality data on traffic conditions in order to generate accurate real-time traffic information. The approach to be described here generates this information by a fleet of taxis equipped with GPS which act as Floating-Car-Data (FCD) provider for a number of metropolitan areas. The first part of this paper describes the methodology of setting up this data base. The information collected enables various applications such as real-time traffic monitoring, time-dynamic routing and fleet management. The second part of the paper proposes a framework for using these data additionally to include environmental effects into intelligent traffic management systems. To this end, a mapping between travel times and traffic flows is proposed. Some challenges related to the computation of emissions from velocity profiles are discussed. Equipped with these ingredients, an environmentally friendly intelligent traffic management might be in reach

    The effect of bandwidth in scale-free network traffic

    Get PDF
    We model information traffic on scale-free networks by introducing the bandwidth as the delivering ability of links. We focus on the effects of bandwidth on the packet delivering ability of the traffic system to better understand traffic dynamic in real network systems. Such ability can be measured by a phase transition from free flow to congestion. Two cases of node capacity C are considered, i.e., C=constant and C is proportional to the node's degree. We figured out the decrease of the handling ability of the system together with the movement of the optimal local routing coefficient αc\alpha_c, induced by the restriction of bandwidth. Interestingly, for low bandwidth, the same optimal value of αc\alpha_c emerges for both cases of node capacity. We investigate the number of packets of each node in the free flow state and provide analytical explanations for the optimal value of αc\alpha_c. Average packets traveling time is also studied. Our study may be useful for evaluating the overall efficiency of networked traffic systems, and for allevating traffic jam in such systems.Comment: 6 pages, 4 figure
    • …
    corecore