15,881 research outputs found

    Research Directions in Information Systems for Humanitarian Logistics

    Get PDF
    This article systematically reviews the literature on using IT (Information Technology) in humanitarian logistics focusing on disaster relief operations. We first discuss problems in humanitarian relief logistics. We then identify the stage and disaster type for each article as well as the article’s research methodology and research contribution. Finally, we identify potential future research directions

    Relief distribution networks : a systematic review

    Get PDF
    In the last 20 years, Emergency Management has received increasing attention from the scientific community. Meanwhile, the study of relief distribution networks has become one of the most popular topics within the Emergency Management field. In fact, the number and variety of contributions devoted to the design or the management of relief distribution networks has exploded in the recent years, motivating the need for a structured and systematic analysis of the works on this specific topic. To this end, this paper presents a systematic review of contributions on relief distribution networks in response to disasters. Through a systematic and scientific methodology, it gathers and consolidates the published research works in a transparent and objective way. It pursues three goals. First, to conduct an up-to-date survey of the research in relief distribution networks focusing on the logistics aspects of the problem, which despite the number of previous reviews has been overlooked in the past. Second, to highlight the trends and the most promising challenges in the modeling and resolution approaches and, finally, to identify future research perspectives that need to be explored

    Facility location optimization model for emergency humanitarian logistics

    Get PDF
    Since the 1950s, the number of natural and man-made disasters has increased exponentially and the facility location problem has become the preferred approach for dealing with emergency humanitarian logistical problems. To deal with this challenge, an exact algorithm and a heuristic algorithm have been combined as the main approach to solving this problem. Owing to the importance that an exact algorithm holds with regard to enhancing emergency humanitarian logistical facility location problems, this paper aims to conduct a survey on the facility location problems that are related to emergency humanitarian logistics based on both data modeling types and problem types and to examine the pre- and post-disaster situations with respect to facility location, such as the location of distribution centers, warehouses, shelters, debris removal sites and medical centers. The survey will examine the four main problems highlighted in the literature review: deterministic facility location problems, dynamic facility location problems, stochastic facility location problems, and robust facility location problems. For each problem, facility location type, data modeling type, disaster type, decisions, objectives, constraints, and solution methods will be evaluated and real-world applications and case studies will then be presented. Finally, research gaps will be identified and be addressed in further research studies to develop more effective disaster relief operations

    Optimal logistics scheduling with dynamic information in emergency response: case studies for humanitarian objectives

    Get PDF
    The mathematical model of infectious disease is a typical problem in mathematical modeling, and the common infectious disease models include the susceptible-infected (SI) model, the susceptible-infected-recovered model (SIR), the susceptible-infected-recovered-susceptible model (SIRS) and the susceptible-exposed-infected-recovered (SEIR) model. These models can be used to predict the impact of regional return to work after the epidemic. In this paper, we use the SEIR model to solve the dynamic medicine demand information in humanitarian relief phase. A multistage mixed integer programming model for the humanitarian logistics and transport resource is proposed. The objective functions of the model include delay cost and minimum running time in the time-space network. The model describes that how to distribute and deliver medicine resources from supply locations to demand locations with an efficient and lower-cost way through a transportation network. The linear programming problem is solved by the proposed Benders decomposition algorithm. Finally, we use two cases to calculate model and algorithm. The results of the case prove the validity of the model and algorithm

    On the use of biased-randomized algorithms for solving non-smooth optimization problems

    Get PDF
    Soft constraints are quite common in real-life applications. For example, in freight transportation, the fleet size can be enlarged by outsourcing part of the distribution service and some deliveries to customers can be postponed as well; in inventory management, it is possible to consider stock-outs generated by unexpected demands; and in manufacturing processes and project management, it is frequent that some deadlines cannot be met due to delays in critical steps of the supply chain. However, capacity-, size-, and time-related limitations are included in many optimization problems as hard constraints, while it would be usually more realistic to consider them as soft ones, i.e., they can be violated to some extent by incurring a penalty cost. Most of the times, this penalty cost will be nonlinear and even noncontinuous, which might transform the objective function into a non-smooth one. Despite its many practical applications, non-smooth optimization problems are quite challenging, especially when the underlying optimization problem is NP-hard in nature. In this paper, we propose the use of biased-randomized algorithms as an effective methodology to cope with NP-hard and non-smooth optimization problems in many practical applications. Biased-randomized algorithms extend constructive heuristics by introducing a nonuniform randomization pattern into them. Hence, they can be used to explore promising areas of the solution space without the limitations of gradient-based approaches, which assume the existence of smooth objective functions. Moreover, biased-randomized algorithms can be easily parallelized, thus employing short computing times while exploring a large number of promising regions. This paper discusses these concepts in detail, reviews existing work in different application areas, and highlights current trends and open research lines

    The Incremental Cooperative Design of Preventive Healthcare Networks

    Get PDF
    This document is the Accepted Manuscript version of the following article: Soheil Davari, 'The incremental cooperative design of preventive healthcare networks', Annals of Operations Research, first published online 27 June 2017. Under embargo. Embargo end date: 27 June 2018. The final publication is available at Springer via http://dx.doi.org/10.1007/s10479-017-2569-1.In the Preventive Healthcare Network Design Problem (PHNDP), one seeks to locate facilities in a way that the uptake of services is maximised given certain constraints such as congestion considerations. We introduce the incremental and cooperative version of the problem, IC-PHNDP for short, in which facilities are added incrementally to the network (one at a time), contributing to the service levels. We first develop a general non-linear model of this problem and then present a method to make it linear. As the problem is of a combinatorial nature, an efficient Variable Neighbourhood Search (VNS) algorithm is proposed to solve it. In order to gain insight into the problem, the computational studies were performed with randomly generated instances of different settings. Results clearly show that VNS performs well in solving IC-PHNDP with errors not more than 1.54%.Peer reviewe

    Robust Platelet Logistics Planning in Disaster Relief Operations Under Uncertainty: a Coordinated Approach

    Full text link
    © 2017, Springer Science+Business Media, LLC. Resource sharing, as a coordination mechanism, can mitigate disruptions in supply and changes in demand. It is particularly crucial for platelets because they have a short lifespan and need to be transferred and allocated within a limited time to prevent waste or shortages. Thus, a coordinated model comprised of a mixed vertical-horizontal structure, for the logistics of platelets, is proposed for disaster relief operations in the response phase. The aim of this research is to reduce the wastage and shortage of platelets due to their critical role in wound healing. We present a bi-objective location-allocation robust possibilistic programming model for designing a two-layer coordinated organization strategy for multi-type blood-derived platelets under demand uncertainty. Computational results, derived using a heuristic Δ-constraint algorithm, are reported and discussed to show the applicability of the proposed model. The experimental results indicate that surpluses and shortages in platelets remarkably declined following instigation of a coordinated disaster relief operation

    Physiology-Aware Rural Ambulance Routing

    Full text link
    In emergency patient transport from rural medical facility to center tertiary hospital, real-time monitoring of the patient in the ambulance by a physician expert at the tertiary center is crucial. While telemetry healthcare services using mobile networks may enable remote real-time monitoring of transported patients, physiologic measures and tracking are at least as important and requires the existence of high-fidelity communication coverage. However, the wireless networks along the roads especially in rural areas can range from 4G to low-speed 2G, some parts with communication breakage. From a patient care perspective, transport during critical illness can make route selection patient state dependent. Prompt decisions with the relative advantage of a longer more secure bandwidth route versus a shorter, more rapid transport route but with less secure bandwidth must be made. The trade-off between route selection and the quality of wireless communication is an important optimization problem which unfortunately has remained unaddressed by prior work. In this paper, we propose a novel physiology-aware route scheduling approach for emergency ambulance transport of rural patients with acute, high risk diseases in need of continuous remote monitoring. We mathematically model the problem into an NP-hard graph theory problem, and approximate a solution based on a trade-off between communication coverage and shortest path. We profile communication along two major routes in a large rural hospital settings in Illinois, and use the traces to manifest the concept. Further, we design our algorithms and run preliminary experiments for scalability analysis. We believe that our scheduling techniques can become a compelling aid that enables an always-connected remote monitoring system in emergency patient transfer scenarios aimed to prevent morbidity and mortality with early diagnosis treatment.Comment: 6 pages, The Fifth IEEE International Conference on Healthcare Informatics (ICHI 2017), Park City, Utah, 201
    • 

    corecore