974 research outputs found

    Gait learning for soft microrobots controlled by light fields

    Full text link
    Soft microrobots based on photoresponsive materials and controlled by light fields can generate a variety of different gaits. This inherent flexibility can be exploited to maximize their locomotion performance in a given environment and used to adapt them to changing conditions. Albeit, because of the lack of accurate locomotion models, and given the intrinsic variability among microrobots, analytical control design is not possible. Common data-driven approaches, on the other hand, require running prohibitive numbers of experiments and lead to very sample-specific results. Here we propose a probabilistic learning approach for light-controlled soft microrobots based on Bayesian Optimization (BO) and Gaussian Processes (GPs). The proposed approach results in a learning scheme that is data-efficient, enabling gait optimization with a limited experimental budget, and robust against differences among microrobot samples. These features are obtained by designing the learning scheme through the comparison of different GP priors and BO settings on a semi-synthetic data set. The developed learning scheme is validated in microrobot experiments, resulting in a 115% improvement in a microrobot's locomotion performance with an experimental budget of only 20 tests. These encouraging results lead the way toward self-adaptive microrobotic systems based on light-controlled soft microrobots and probabilistic learning control.Comment: 8 pages, 7 figures, to appear in the proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems 201

    Navigation of mini swimmers in channel networks with magnetic fields

    Get PDF
    Controlled navigation of swimming micro robots inside fluid filled channels is necessary for applications in living tissues and vessels. Hydrodynamic behavior inside channels and interaction with channel walls need to be understood well for successful design and control of these surgical-tools-to-be. In this study, two different mechanisms are used for forward and lateral motion: rotation of helices in the direction of the helical axis leads to forward motion in the viscous fluid, and rolling due to wall traction results with the lateral motion near the wall. Experiments are conducted using a magnetic helical swimmer having 1.5 mm in length and 0.5 mm in diameter placed inside two different glycerol-filled channels with rectangular cross sections. The strength, direction and rotational frequency of the externally applied rotating magnetic field are used as inputs to control the position and direction of the micro swimmer in Y- and T-shaped channels

    Linear actuators for locomotion of microrobots

    Full text link
    University of Technology, Sydney. Faculty of Engineering.The successful development of the miniaturisation techniques for electronic components and devices has paved the way for the miniaturisation in other technological fields. In the past two decades, the research achievements in micromechatronics have spurred fast development of micro machines and micro robotic systems. Miniature or micro actuators are the critical components to make these machines more dexterous, compact and cost effective. The main purpose of this dissertation is to develop micro actuators suitable for the locomotion of an in-pipe or endoscopic microrobot. The content of the thesis covers the selection of the actuation principle, robotic system design, actuator design and prototype construction, performance analysis, and design, analysis, and implementation of the appropriate drive control system. Among different types of actuation principles, piezoelectric and electromagnetic actuators are the two major candidates for the micro robotic systems. In order to find a suitable actuation principle for the desired robotic application, a comparative study was conducted on the scaling effects, attainable energy density, and dynamic performances of both types of actuators. Through the study, it was concluded that the electromagnetic actuator is more suitable for the endoscopic microrobot. Linear actuators are the common design used for the locomotion of microrobots due to many advantages compared to their rotational counterparts. Through a thorough review and comparison of the electromagnetic linear actuator topologies, a moving-coil tubular linear actuator was chosen as the first design due to its simplest structure. Via the magnetic circuit analysis and numerical magnetic field solutions, the actuator was designed for optimum force capability, and the electromagnetic force and the machine parameters of the actuator were predicted. According to the results obtained from the magnetic field analysis, the dynamic model of the actuation system with a driving control scheme was established and used in the actuation performance analysis of the robotic system. Based on the experience achieved through the first design, a new moving-magnet tubular linear actuator was designed. The methodology developed in the design and analysis of the moving-coil linear actuator was adopted for the moving-magnet actuator design. However, the optimal design is more complicated due to the multi-pole and multi-phase structure of the moving-magnet actuator. The electromagnetic force of the actuator was analysed under the condition of different excitation methods. An enhanced parameter computation method is proposed for predicting the actuator parameters. Based on the results of magnetic field analysis, a comprehensive dynamic model of the actuator was developed. Through the coupled field-circuit analysis, this model can predict accurately the dynamic performance of the actuator. The characteristics analysis shows that the performance of the moving-magnet actuator is much better than that of the moving-coil actuator. Two prototypes of the moving-magnet tubular linear actuator with different dimensions were constructed to verify the performance and the scaling theory. Various precision machining techniques were employed during the fabrication. The performances and parameters of the two different prototypes were measured and the results agree substantially with the theory. The brushless DC drive method was chosen for the driving control of the proposed linear actuator because of the compact circuit topology and simple implementation, which are two essential factors for micro applications. A sensorless control scheme based on the back EMF was developed as physical position sensors are not permitted in such a micro system. The control scheme was then applied to the locomotion control of the proposed microrobot. The system simulation shows that the control performances of both the actuator and microrobot are satisfactory. A dSPACE prototyping system based driving control hardware was designed and implemented to experimentally verify the control design. The experimental results agree substantially with the theoretical work

    Modeling, simulation and control of microrobots for the microfactory.

    Get PDF
    Future assembly technologies will involve higher levels of automation in order to satisfy increased microscale or nanoscale precision requirements. Traditionally, assembly using a top-down robotic approach has been well-studied and applied to the microelectronics and MEMS industries, but less so in nanotechnology. With the boom of nanotechnology since the 1990s, newly designed products with new materials, coatings, and nanoparticles are gradually entering everyone’s lives, while the industry has grown into a billion-dollar volume worldwide. Traditionally, nanotechnology products are assembled using bottom-up methods, such as self-assembly, rather than top-down robotic assembly. This is due to considerations of volume handling of large quantities of components, and the high cost associated with top-down manipulation requiring precision. However, bottom-up manufacturing methods have certain limitations, such as components needing to have predefined shapes and surface coatings, and the number of assembly components being limited to very few. For example, in the case of self-assembly of nano-cubes with an origami design, post-assembly manipulation of cubes in large quantities and cost-efficiency is still challenging. In this thesis, we envision a new paradigm for nanoscale assembly, realized with the help of a wafer-scale microfactory containing large numbers of MEMS microrobots. These robots will work together to enhance the throughput of the factory, while their cost will be reduced when compared to conventional nanopositioners. To fulfill the microfactory vision, numerous challenges related to design, power, control, and nanoscale task completion by these microrobots must be overcome. In this work, we study two classes of microrobots for the microfactory: stationary microrobots and mobile microrobots. For the stationary microrobots in our microfactory application, we have designed and modeled two different types of microrobots, the AFAM (Articulated Four Axes Microrobot) and the SolarPede. The AFAM is a millimeter-size robotic arm working as a nanomanipulator for nanoparticles with four degrees of freedom, while the SolarPede is a light-powered centimeter-size robotic conveyor in the microfactory. For mobile microrobots, we have introduced the world’s first laser-driven micrometer-size locomotor in dry environments, called ChevBot to prove the concept of the motion mechanism. The ChevBot is fabricated using MEMS technology in the cleanroom, following a microassembly step. We showed that it can perform locomotion with pulsed laser energy on a dry surface. Based on the knowledge gained with the ChevBot, we refined tits fabrication process to remove the assembly step and increase its reliability. We designed and fabricated a steerable microrobot, the SerpenBot, in order to achieve controllable behavior with the guidance of a laser beam. Through modeling and experimental study of the characteristics of this type of microrobot, we proposed and validated a new type of deep learning controller, the PID-Bayes neural network controller. The experiments showed that the SerpenBot can achieve closed-loop autonomous operation on a dry substrate

    Optimization of the size of a magnetic microrobot for high throughput handling of micro-objects.

    No full text
    International audienceOne of the greatest challenges in microrobotic is to handle individually a large number of objects in a short time, for applications such as cell sorting and assembly of microcomponents. This ability to handle a large number of microobjects is directly related to the size of the microrobot. This paper proposes a theoretical study of the size of a magnetic microrobot maximizing its capacity of displacement. It demonstrates that there is an optimal size can be obtained, due to a trade-off between the inertial and the viscous effects. Analyticalexpressions of the optimal size and the related frequency of motion are derived from a simplified model to highlight the influence of the geometrical and the physical parameters of the magnetic manipulation system such as the viscosity of the liquid and the size of the workspace. A numerical simulation validates the analytical analysis and demonstrates a high displacement capacity of the microrobot (around 100 back and forth motions per second for a robot of around 20 µm in water)

    Magnetic Microrobot Locomotion in Vascular System Using A Combination of Time Delay Control and Terminal Sliding Mode Approach

    Get PDF
    This thesis deals with designing a control law for trajectory tracking. The target is to move a microrobot in a blood vessel accurately. The microrobot is made of a ferromagnetic material and is propelled by a magnetic gradient coil. The controller combines time delay control (TDC) and terminal sliding mode (TSM) control. TDC allows deriving a control law without prior knowledge of the plant. As the system is a nonlinear function which also includes uncertainties and unexpected disturbance, TDC gives a benefit of less effort needed compared to model-based controller. Meanwhile, TSM term adds accuracy which it compensates TDC estimation error and also adds robustness against parameter variation and disturbance. In addition, anti-windup scheme acts as a support by eliminating the accumulated error due to integral term by TDC and TSM. So, the proposed controller can avoid actuator saturation problem caused by windup phenomenon. Simulations are conducted by copying a realistic situation. Accuracy and robustness evaluations are done in stages to see how each terms in a control law give an improvement and to see how an overall controller performs. ⓒ 2014 DGISTI. INTRODUCTION 1 -- 1.1. BACKGROUND 1 -- 1.2. RELATED RESEARCH 3 -- 1.3. OBJECTIVE 4 -- 1.4. SPECIFICATION 4 -- 1.5. SCOPE 5 -- 1.6. OVERVIEW 5 -- II. METHOD 6 -- 2.1. TIME DELAY CONTROL 6 -- 2.2. TERMINAL SLIDING MODE 9 -- 2.3. ANTI-WINDUP SCHEME 11 -- 2.4. PRACTICAL APPROACH 14 -- 2.4.1. FEEDBACK SIGNAL 14 -- 2.4.2. CONTROLLER GAIN SELECTION 15 -- 2.4.3. MEASUREMENT NOISE 16 -- 2.5. ADVANTAGES AND DRAWBACKS 16 -- III. RESULTS 17 -- 3.1. SIMULATION SETUP 17 -- 3.1.1. PLANT MODELING 18 -- 3.1.2. ACTUATOR AND POSITION SENSOR MODELING 20 -- 3.1.3. TRAJECTORY 21 -- 3.1.4. SIMULATION PARAMETER 21 -- 3.1.5. CONTROLLER TARGET 24 -- 3.2. ACCURACY AND ROBUSTNESS EVALUATION 24 -- 3.3. ANTI-WINDUP SCHEME EVALUATION 32 -- 3.4. SOLUTION FOR MEASUREMENT NOISE 35 -- 3.5. 2D SIMULATION 46 -- CONCLUSION AND FUTURE WORK 49 -- REFERENCES 50 -- 요 약 문(ABSTRACT IN KOREAN) 52이 논문은 경로 추적을 위한 컨트롤 법을 설계한 것이다. 목표는 혈관 내에서 정확하게 마이크로 로봇의 움직이는 것이다. 마이크로 로봇은 강자성체 물질로 만들어져 있고 자기장에 의해서 추진 된다. 컨트롤러는 시간지연제어기법(time delay control)과 terminal sliding 컨트롤을 함께 사용하였다. TDC는 플랜트에 대한 선행 지식 없이 적용할 수 있다. 시스템이 불확실함과 예상치 못한 외란을 포함하고 있는 비선형 일 때 TDC는 모델 기반의 컨트롤러에 비해 적은 노력이 드는 장정이 있다. 한편, TSM은 정확도를 더하여 TDC의 주정에러를 보상하고 또한 매개변수의 변화와 외란에 반한 견고함을 더한다. 게다가 안티 와인드 업은 TDC와 TSM의 적분 때문에 축적되는 에러를 제거하는 역할을 한다. 제안한 컨트롤러는 와인드업 현상에 의한 작동기의 포화현상을 피할 수 있다. 시뮬레이션은 실제 현상을 따라 시행되었다. 정확도와 견고함 평가는 전체적인 컨트롤러가 어떻게 수행하는가를 보는 것과 각각 컨트롤 방법이 주는 개선점을 보는 단계로 실시하였다. ⓒ 2014 DGISTMasterdCollectio

    Numerical analysis of a planar wave propagation based micropropulsion system

    Get PDF
    Micropropulsion mechanisms differ from macro scale counterparts owing to the domination of viscous forces in microflows. In essence, propulsion mechanisms such as cilia and flagella of single celled organisms can be deemed as nature’s solution to a challenging problem, and taken as a basis for the design of an artificial micropropulsion system. In this paper we present numerical analysis of the flow due to oscillatory planar waves propagating on microstrips. The time-dependent three-dimensional flow due to moving boundaries of the strip is governed by incompressible Navier-Stokes equations in a moving coordinate system, which is modeled by means of an arbitrary Lagrangian-Eulerian formulation. The fluid medium surrounding the actuator boundaries is bounded by a channel, and neutral boundary conditions are used in the upstream and downstream. Effects of actuation parameters such as amplitude, excitation frequency, wavelength of the planar waves are demonstrated with numerical simulations that are carried out by third party software, COMSOL. Functional-dependencies with respect to the actuation parameters are obtained for the average velocity of the strip and the efficiency of the mechanism
    corecore