2 research outputs found

    Local scheduling techniques for memory coherence in a clustered VLIW processor with a distributed data cache

    Get PDF
    Clustering is a common technique to deal with wire delays. Fully-distributed architectures, where the register file, the functional units and the cache memory are partitioned, are particularly effective to deal with these constraints and besides they are very scalable. However the distribution of the data cache introduces a new problem: memory instructions may reach the cache in an order different to the sequential program order, thus possibly violating its contents. In this paper two local scheduling mechanisms that guarantee the serialization of aliased memory instructions are proposed and evaluated: the construction of memory dependent chains (MDC solution), and two transformations (store replication and load-store synchronization) applied to the original data dependence graph (DDGT solution). These solutions do not require any extra hardware. The proposed scheduling techniques are evaluated for a word-interleaved cache clustered VLIW processor (although these techniques can also be used for any other distributed cache configuration). Results for the Mediabench benchmark suite demonstrate the effectiveness of such techniques. In particular, the DDGT solution increases the proportion of local accesses by 16% compared to MDC, and stall time is reduced by 32% since load instructions can be freely scheduled in any cluster However the MDC solution reduces compute time and it often outperforms the former. Finally the impact of both techniques on an architecture with attraction buffers is studied and evaluated.Peer ReviewedPostprint (published version

    Dynamic memory disambiguation for array references

    No full text
    corecore