
Abstract
Clustering is a common technique to deal with wire delays. Fully-
distributed architectures, where the register file, the functional
units and the cache memory are partitioned, are particularly
effective to deal with these constraints and besides they are very
scalable. However, the distribution of the data cache introduces a
new problem: memory instructions may reach the cache in an
order different to the sequential program order, thus possibly vio-
lating its contents. In this paper two local scheduling mechanisms
that guarantee the serialization of aliased memory instructions
are proposed and evaluated: the construction of memory depen-
dent chains (MDC solution), and two transformations (store rep-
lication and load-store synchronization) applied to the original
Data Dependence Graph (DDGT solution). These solutions do
not require any extra hardware.

The proposed scheduling techniques are evaluated for a
word-interleaved cache clustered VLIW processor (although
these techniques can also be used for any other distributed cache
configuration). Results for the Mediabench benchmark suite dem-
onstrate the effectiveness of such techniques. In particular, the
DDGT solution increases the proportion of local accesses by 16%
compared to MDC, and stall time is reduced by 32% since load
instructions can be freely scheduled in any cluster. However, the
MDC solution reduces compute time and it often outperforms the
former. Finally the impact of both techniques on an architecture
with Attraction Buffers is studied and evaluated.

1. Introduction

As technology evolves, processors are moving from capacity-
bound to communication-bound due to the increasing impact of
wire delays [1]. One approach to deal with this problem is to par-
tition some resources of the processor into semi-independent
units, while others remain centralized [20]. Each of these units is
commonly referred to as a cluster. A cluster often consists of a
local register file and a subset of the functional units. Communi-
cations within a cluster are fast, while inter-cluster communica-
tions are slow. Clustering has been used in superscalar processors
[12], but this trend is even more noticeable in embedded/DSP
VLIW processors [8][9].

Even though the distribution of the register file and functional
units is common in some commercial microprocessors, some
recent works advocate for clustering other resources like the
memory hierarchy [2][23][10][11]. In this work we focus on this
kind of microarchitectures. In particular, this paper deals with the
problem of memory coherence, one of the most challenging issues
in clustered microarchitectures with a distributed data cache. In
such microarchitectures, memory dependent instructions must be
scheduled in such a way that they reach the memory system in
program order to guarantee memory correctness.

Two local scheduling techniques are proposed and evaluated
to solve this problem for a word-interleaved cache clustered
VLIW processor. The first one is based on building sets of mem-
ory dependent instructions (memory dependent chains) and
scheduling all instructions belonging to the same set in the same
cluster, since serialization of memory instructions is guaranteed
inside a cluster but not among clusters. We call this solution the
MDC solution. The second solution is based on some graph trans-
formations that guarantee the synchronization among memory
dependent instructions and it is referred to as the DDGT solution.
Even though both solutions are proposed and evaluated for a
word-interleaved cache clustered VLIW processor, they can be
applied to any clustered processor with a distributed cache such as
the multiVLIW [23].

Results for the Mediabench benchmark suite demonstrate that
the MDC solution works very well even though it seems to be a
conservative solution at first. With MDC, the execution time of
the benchmarks is close to those of the baseline (where memory
instructions are freely scheduled in any cluster assuming they will
reach the cache in the sequential program order). This is so
because sets of memory dependent instructions (memory depen-
dent chains) are small. However, in those cases where memory
dependent instructions are predominant, the DDGT solution out-
performs the MDC solution, since it increases the proportion of
local versus remote accesses and, in consequence, it reduces stall
time. Hence, the DDGT solution could be used as an alternative
in those loops with a large amount of memory dependent instruc-
tions. Finally, the interaction of these two techniques in a word-
interleaved cache clustered VLIW processor with Attraction
Buffers is studied and evaluated.

The layout of the data cache is a key performance issue for
future microprocessors that will be dominated by wire delays.

Local Scheduling Techniques for Memory Coherence in a
Clustered VLIW Processor with a Distributed Data Cache

✣ Departament d’Arquitectura de Computadors
Universitat Politècnica de Catalunya

Barcelona - SPAIN

✝ Intel Barcelona Research Center
Intel Labs - Universitat Politècnica de Catalunya

Barcelona - SPAIN

Enric Gibert✣, Jesús Sánchez✝, Antonio González✣✝

E-mail: egibertc@ac.upc.es, jesusx.sanchez@intel.com, antonio@ac.upc.es

Proceedings of the International Symposium on Code Generation and Optimization (CGO’03)
0-7695-1913-X/03 $17.00 © 2003 IEEE

Although the same problem was studied in [2], this is the first time
to our knowledge that the problem of memory coherence has been
studied in traditional clustered VLIW processors with a distributed
cache without requiring any extra hardware support.

The rest of the paper is organized as follows. In Section 2 the
design of a clustered VLIW processor with an interleaved distrib-
uted cache and the scheduling algorithms used for it are presented.
This section ends with an example exposing the problem of mem-
ory coherence. Next, in Section 3, the two proposed techniques are
explored. After that, these techniques are evaluated in Section 4,
while the interaction with Attraction Buffers is studied and evalu-
ated in Section 5. Finally, further work, related work and conclu-
sions are exposed in Section 6, Section 7 and Section 8 respectively.

2. A word-interleaved cache clustered VLIW
processor

This section introduces the design of the proposed architecture
along with the static instruction scheduling techniques that have
been used in our experiments.

2.1. The architecture

In this paper we propose and evaluate some scheduling techniques
for a word-interleaved cache clustered VLIW processor such as the
one shown in Figure 1. In such an architecture, a cache block is dis-
tributed among the different clusters and each line of a cache bank
holds some words of the block, depending on the interleaving fac-
tor. The term subblock is used to identify the words of a given block
that are mapped to the same cluster while the term home cluster is
used to identify the cluster where a given address is mapped to. For
example, given a 4-cluster architecture like the one in Figure 1, a
cache block of 8 words and an interleaving factor of one word,
words 0 and 4 of the block form subblock 1 and are mapped into
cluster 1. The term cache module is used to identify the local por-
tion of the data cache in each cluster.

In an interleaved cache clustered architecture, a memory access
can be classified into four different types:

1) local hit: when the address of the access references the local
cache module and the requested data is present in it.

2) remote hit: when the address of the access references a
remote cache module and the requested data is present there.

3) local miss: when the address of the access references the
local cache module and the requested data is not present in it.

4) remote miss: when the address of the access references a
remote cache module and the requested data is not present there.

In addition, a stall-on-use processor is assumed instead of a
stall-on-miss processor. Hence, when a load instruction is issued
and misses in the cache (or it performs a remote access) the proces-
sor is not stalled until the value is needed by a posterior consumer
instruction. In particular, when the first consumer of the load is
issued, the processor is stalled if the loaded value has not arrived yet
from the next level in the memory hierarchy (or from a remote
cache module in case of a remote access).

Register-to-register communication buses are used to inter-
change register values among clusters. Hence, the compiler is
responsible to add and schedule explicit copy operations when is
schedules two register-flow dependent instructions in different clus-
ters. This paper focuses on the scheduling techniques rather than on
the architecture. For further details on the architecture, refer to [10].

2.2. Instruction scheduling algorithms

The proposed scheduling algorithms for such an architecture are
targeted to cyclic code (loops). In particular, modulo scheduling
techniques are applied. Modulo scheduling is an effective technique
to extract ILP from loops by overlapping the execution of succes-
sive iterations without the need to unroll the loop [5]. It is a well-
known technique used by many current compilers.

Memory accesses can be satisfied locally or remotely in a word-
interleaved cache clustered VLIW processor and mechanisms are
used to maximize the number of local accesses since they are satis-
fied with smaller latencies. For example, loops are unrolled so that
the number of instructions with a stride multiple of NxI is maxi-
mized (where N is the number of clusters and I is the interleaving
factor expressed in bytes). Such instructions have the particularity
that access data mapped in only one cluster once the loop is ene-
tered. The algorithm is then responsible to assign these instructions
to the correct clusters in order to maximize local accesses. Other
techniques include padding and the use of profile information.

In addition, memory accesses can be satisfied with four differ-
ent latencies: local hit, remote hit, local miss and remote miss.
Scheduling memory instructions with the smallest latency will pro-
duce tight schedules and compute time will be reduced. However,
the processor will have to be stalled often if most accesses are sat-
isfied with larger latencies. On the other hand, if memory instruc-
tions are scheduled with the largest latency, stall time will be small
but compute time may be unnecessarily increased. In order to
achieve a compromise between compute time and stall time [21],
the algorithm assigns the “appropriate” latency to memory instruc-
tions. In particular, memory instructions will be scheduled with the
largest possible latency that does not have an impact on compute
time.

Finally, non-memory instructions are assigned to clusters in
such a way that register-to-register communications are minimized

W0 W1 W2 W3 W4 W5 W6 W7
an arbitrary
cache block

Next memory level

TAG T W4W0

Cache Module

Functional
Units

Register
File

TAG T W5W1

Cache Module

Functional
Units

Register
File

TAG T W6W2

Cache Module

Functional
Units

Register
File

TAG T W7W3

Cache Module

Functional
Units

Register
File

Subblock 1 Memory buses

Cluster 4Cluster 3Cluster 2Cluster 1

Register-to-register communication buses

Figure 1. A word-interleaved clustered VLIW processor.

Proceedings of the International Symposium on Code Generation and Optimization (CGO’03)
0-7695-1913-X/03 $17.00 © 2003 IEEE

while workload balance among the clusters is maximized. How-
ever, memory instructions are assigned to clusters using two differ-
ent heuristics. The first heuristic, called PrefClus (Preferred Cluster
Heuristic), schedules memory instructions in their preferred cluster
(the cluster they access most1). This heuristic tries to reduce remote
accesses and stall time. Padding is used so that the preferred cluster
information of a memory instruction is consistent among different
input sets.

On the other hand, memory instructions are treated as any other
instruction when MinComs (Minimize Communications Heuristic)
is used instead: they are scheduled in the cluster with the best trade-
off between register-to-register communications and workload bal-
ance. After the whole graph has been scheduled using this heuristic,
a post-pass phase is used to increase local accesses. In particular,
the clusters where instructions have been scheduled are treated as
virtual clusters and a one-to-one mapping function is computed to
assign virtual clusters to physical clusters, since we always consider
homogeneous clusters. Virtual clusters are assigned to physical
clusters using the preferred cluster information of each memory
instruction.

For further details on the scheduling algorithms, refer to [11].

2.3. The memory coherence problem

Memory accesses in a stall-on-use clustered VLIW processor with
a word-interleaved data cache can reach the memory system in an
order different than the sequential program order. Such reordering
of memory instructions is fine as long as they do not alias with one
another. However, if aliased memory instructions reach the memory
system in an unordered manner, data may be corrupted. For exam-
ple, assume the cluster configuration of Figure 2, where 4 clusters
are used and the latency of a memory bus is 2 cycles. Imagine a
store operation scheduled in cluster 4 which updates variable X that
is mapped in the cache module of cluster 1, and a load operation
that reads the same variable X scheduled in cluster 1 some cycles
later. Since a memory bus may not be available when the store in
cluster 4 issues the remote request to update X2, there is no guaran-
tee that variable X will have been updated in cluster 1 by the time

the load is issued, even if the load were scheduled in cycle i+1003.
Hence, the load may end up reading a stale value.

Situations similar to this one can occur in any clustered config-
uration where the data cache has been clustered as well, such as the
multiVLIW [23] or a replicated-cache clustered VLIW processor.
In the following sections, techniques to avoid data corruption are
described. All these techniques are proposed and evaluated for a
word-interleaved cache clustered VLIW processor although they
can be extended to any other cache configuration. The proposed
solutions do not require any extra hardware support.

3. Handling memory dependent instructions

Before the presentation of the proposed techniques, a Data Depen-
dence Graph (DDG) will be introduced that will be used as an
example during this section.

3.1. Introduction

In Figure 3 an example DDG is depicted. The preferred cluster
information of each memory instruction is shown assuming a 4-
cluster architecture. For example, during profiling, instruction n1
referenced cluster 1 70 times, while it referenced data mapped in
cluster 2 30 times.

Memory dependences between instructions can be classified in
three groups: memory-flow dependences (MF) between a store and
a load instruction, memory-anti dependences (MA) between a load
and a store instruction, and memory-output dependences (MO)
between two stores. Memory dependences are similar to register
dependences and are added by the compiler after applying some
memory disambiguation techniques [6]. Note that the compiler
always stays on the conservative side: whenever it can not deter-
mine whether two memory instructions will alias, it will add mem-

1. The preferred cluster is computed through profiling.

C
L

U
ST

E
R

 2
CLUSTER 1

var X

cache
module

CLUSTER 4

NEXT MEMORY LEVEL

C
L

U
ST

E
R

 3

cache
module

memory buses

store to Xcycle i

cycle i+1

cycle i+2

cycle i+3

SCHEDULE

load X

Figure 2. Example of the memory coherence problem in a
clustered processor with a distributed data cache..

2. Memory buses may be busy due to other remote accesses, cache misses, cache
replacements and other actions which can not be controlled easily by the com-
piler. Hence the latency of a memory bus is non-deterministic.

3. The later the dependent load is scheduled, the fewer probabilities to read a stale
value. However, there is no guarantee that the value of X has been updated in any
case.

MO = memory output dep

MA = memory anti dep

MF = memory flow dep

RF = register flow dep

d = distance of dependence

n1

load

n2

load

add

n5

n3

n4

store

store

MOMO
MF

RF

MAMF

pref = {20 50 30 0}

pref = {0 10 20 70}

d=1

d=1
d=1

RF

pref = {70 30 0 0} pref = {0 0 100 0}

sequential program order = { n1, n2, n3, n4, n5 }

MA

MF
d=1MA MA

MF
d=1

Figure 3. An example of a DDG with some memory depen-
dences.

Proceedings of the International Symposium on Code Generation and Optimization (CGO’03)
0-7695-1913-X/03 $17.00 © 2003 IEEE

ory dependences between them. Hence, memory dependences in a
DDG represent true dependences and false unresolved depen-
dences.

3.2. Memory Dependent Chains (MDC solution)

One solution to guarantee the serialization of two memory accesses
that may alias with each other is to schedule them in the same clus-
ter. The scheduling algorithm will build sets of memory dependent
instructions and schedule all nodes belonging to the same set in the
same cluster (we refer to these sets as memory dependent chains).
The serialization of memory dependent accesses when this mecha-
nism is used is guaranteed by three facts:

1) memory instructions that alias with each other will be sched-
uled in the same cluster. Memory instructions scheduled in the same
cluster will be issued in program order in that cluster and will reach
their corresponding home cluster in program order as well.

2) memory instructions scheduled in different clusters corre-
spond to instructions that the compiler has been able to determine
that they will never alias. Hence, these instructions can reach their
corresponding home cluster in any order since they will never ref-
erence the same data.

3) memory instructions that do not alias with each other and
that are scheduled in the same cluster can also reach their home
cluster in any order.

The scheduling algorithm is responsible to build memory
dependent chains and assign them to clusters. If the PrefClus heu-
ristic is used, memory dependent chains are computed prior to
scheduling. The algorithm will then mark all instructions in the
same chain to be scheduled in the average preferred cluster of the
whole chain.

However, if the MinComs heuristic is used instead, each mem-
ory dependent chain will be built when the scheduling algorithm is
about to schedule the first instruction of the chain. The algorithm
will then choose the cluster where register-to-register communica-
tions are minimized for that instruction and mark all other instruc-
tions in the chain to be scheduled in that same cluster. Recall that
the MinComs uses a post-pass phase after scheduling in order to
increase local accesses.

For example, recalling the DDG in Figure 3, nodes {n1, n2, n3,
n4} form a memory dependent chain and will be scheduled in the
same cluster. If the PrefClus heuristic is used, all nodes will be
scheduled in cluster 3 since this is their average preferred cluster.
On the other hand, if the MinComs heuristic is used, nodes {n1, n2,
n3, n4} will be scheduled in the virtual cluster where register-to-
register communications are minimized and workload balance
maximized (say virtual cluster 1). When the post-pass phase is
applied, they may end up being scheduled in physical cluster 1, 2,
3 or 4 depending on the rest of the graph (for example, if no more
memory instructions exist in the graph, virtual cluster 1 will be
mapped to physical cluster 3 since this is the cluster where local
memory accesses are maximized).

3.3. Data Dependence Graph Transformations
(DDGT solution)

Another possible solution to guarantee the serialization of depen-
dent memory accesses is to apply some transformations in the Data

Dependence Graph (DDG). Two transformations will be used: store
replication (to overcome memory-flow or MF and memory-output
or MO dependences), and load-store synchronization (to overcome
memory-anti or MA dependences).

In order to overcome MF and MO dependences, all stores that
have a memory dependence with another instruction in the graph
will be replicated (store replication). For example, assuming a 4-
cluster architecture, each of these stores will be replicated 3 times
and each instance of the same store will be scheduled in a different
cluster1. Out of all instances, only the one that is scheduled in the
home cluster (which is known at execution time based on the com-
puted address) will execute while the rest will just be nullified. We
will refer to the instance scheduled in the home cluster as the local
instance while we will use the term remote instance to refer to the
rest. This technique guarantees that a variable in memory is updated
as soon as possible since the update is always performed locally.
Any posterior load that accesses the same variable will always read
the newly updated value. In case two stores access the same vari-
able, two instances in the same cluster (one for each store) will be
executed and they will be serialized in that cluster. Finally, note that
only stores that have a memory dependence with some other
instruction in the graph need to be replicated since independent
stores can proceed in any order.

Recall the example of Figure 2, where the store that updates
variable X mapped in cluster 1 is scheduled in cluster 4. If depen-
dent stores are replicated (see Figure 4), the algorithm will schedule
each instance in a different cluster. Note that each instance may be
scheduled at different cycles as long as they are all scheduled before
the load2. At execution time, since the address to be updated is
mapped in cluster 1, the instance in cluster 1 will update variable X.

The second transformation is called load-store synchronization
and it is used to overcome MA dependences. MA dependences
appear between a load instruction and a store instruction that may
reference the same data. We must guarantee that if they alias, the
load instruction reads the memory value before the store updates it.
This is achieved by synchronizing the store operation with one con-
sumer of the load. When a consumer of a load is issued, the proces-

1. Replicating an instruction of the DDG implies the replication of all its input and
output dependences and dependences to itself as well.

2. Assuming that the latency of a memory bus is 2 cycles, stores in clusters 2, 3 and
4 of the example could even be scheduled in cycles i+3, i+4 and i+5.

CLUSTER 1

var X

cache
module

CLUSTER 4

cache
module

C
L

U
ST

E
R

 3

C
L

U
ST

E
R

 2

NEXT MEMORY LEVEL

cycle i

cycle i+1

cycle i+2

cycle i+3

SCHEDULE

store to Xstore to X

memory buses

store to X

store to X

load X

Figure 4. Example of store-replication to overcome MF and
MO dependences.

Proceedings of the International Symposium on Code Generation and Optimization (CGO’03)
0-7695-1913-X/03 $17.00 © 2003 IEEE

sor is stalled if the loaded value is not available yet. Hence, when
the consumer of the load is finally executed the load has been com-
pleted and any dependent store can proceed. Such transformation
changes a MA dependence in the DDG between a load and a store
by a synchronization (SYNC) dependence between one consumer
of the load and the store. This new SYNC dependence will indicate
that the store must be scheduled after or at least at the same time as
the consumer is and never before it.

Let’s take a look at how these transformations are applied to the
DDG in Figure 3. First, if 4 clusters are used, nodes {n3, n4} are
replicated 3 times (along with all their corresponding edges, which
are not shown in Figure 5 for clarity purposes) and each instance
will be scheduled in a different cluster. At execution time, since
only the local instance of each store is really executed, n3 of itera-
tion 1 will be executed before n4 of the same iteration, while n4 of
iteration 1 will be executed before n3 of iteration 2 and so on. This
also guarantees that if n1 or n2 of a posterior iteration access the
same data as any of the stores, the stores will have already updated
the value in memory. On the other hand, in order to overcome MA
dependences, nodes {n3, n4} are synchronized with two consumers
of nodes {n1, n2}. For example, the MA dependences between
nodes n2 and n3 and between n2 and n4 are changed by SYNC
dependences between node n5 (the consumer of n2) and nodes n3
and n4. The resulting graph can be seen in Figure 5.

However, special attention must be paid to MA dependences
with node n1. For example, the MA dependence between nodes n1
and n4 is redundant and can be eliminated, since n4 already
depends on n1 by a register-flow or RF dependence and hence, n4
will not execute until n1 has completed. The MA dependence
between n1 and n3 is a little bit more complicated to treat. If such a
dependence is changed by a SYNC dependence between the con-
sumer of n1 (which is n4) and n3, an impossible loop will be created
in the graph: n3 will have to be executed before n4 in order to satisfy
the MO dependence between them, but, at the same time, n3 will
have to be executed after n4 in order to satisfy the newly created
SYNC dependence between them. Given a MA dependence
between a load instruction L (in this case n1) and a store instruction
S (in this case n3), this problem happens when the consumer of L is

another memory instruction M (in this case n4) which is sequen-
tially posterior to S and at the same time, memory dependent on S.
The solution to overcome this problem is to create an additional
consumer of the load and synchronize the store with such a con-
sumer. This newly created consumer (in Figure 5 we have labeled it
as NEW_CONS) is a fake consumer and must only read the value
produced by the load (it could be an instruction like add r0=r0+r27
if r27 is the target register of the load and r0 contains always a con-
stant value of zero).

After all these transformations, the load instructions (nodes
{n1, n2}) do not need to be scheduled in the same cluster and can
be freely scheduled in any cluster. If the PrefClus heuristic is used,
n1 and n2 will be scheduled in their preferred cluster (clusters 1 and
3 respectively), while if the MinComs heuristic is used instead, they
will be scheduled in the cluster where register-to-register commu-
nications are minimized and workload balance is maximized.

The pseudo-code of the algorithm to transform a DDG is as fol-
lows:
function transform_DDG()
/* Handling MF and MO deps. --> store replication */
forall stores S that are memory dependent on any
other instruction
replicate S N-1 times (where N = # of clusters)
replicate all input and output deps. of S

end for

/* Handling MA deps. --> load-store synchronization */
forall MA dependences D
let L = source of D (load)
let S = target of D (store)
let dist = distance of D
if (not exists a register-flow dependence

between L and S with distance dist) then
cons = select one consumer of L

(if possible, not a store)
if (cons is a load or a store) and

(sequentially posterior to S) and
(dependent on S) then

cons = create new consumer for L
(fake consumer)

add RF dependence between L and cons
fi
add SYNC dep. with distance dist between cons and S

fi
remove dependence D

end for
end function

Attention must be paid when replicating the edges of the repli-
cated stores in order not to replicate some redundant dependences
(MO dependences between a store and itself) and in order to repli-
cate some newly created dependences (for example, dependences
between a new instance of n3 and a new instance of n4 in Figure 5).

4. Performance evaluation

In this section results for the proposed scheduling techniques are
presented. First, the experimental framework is explained, while in
Section 4.2 cycle count and local hit ratio results are presented and
studied.

4.1. Experimental framework

The IMPACT compiler [4] has been used as the base infrastructure
to compile the benchmarks, optimize them, and build hyperblocks
[17]. The benchmarks we have used are a subset of the Mediabench

store

n3
CONS
NEW

store

n4

add

n5

n2

load

n1

load

RF

MF

MF

MF

RF MO MO
MF

SYNC

RF

SYNC

4 copies

4 copies

MO = memory output dep

MA = memory anti dep

MF = memory flow dep

RF = register flow dep

SYNC = synchronization dep

sequential program order = { n1, n2, n3, n4, n5 }

Figure 5. The DDG after applying all the proposed DDG
transformations.

Proceedings of the International Symposium on Code Generation and Optimization (CGO’03)
0-7695-1913-X/03 $17.00 © 2003 IEEE

suite [14]. They represent real workloads that can be found in media
or embedded processors such as DSPs. The benchmarks and their
inputs are summarized in Table 1. All benchmarks have been simu-
lated completely.

The last column for each benchmark in Table 1 indicates the
most common data type size. The value in brackets shows the per-
centage of dynamic memory instructions that reference data of that
size. Two different interleaving factors have been used (2 bytes and
4 bytes) to better match the applications’ characteristics. An inter-
leaving factor of 4 bytes has been used in epicdec, jpegdec, jpegenc,
mpeg2dec, pgpdec, pgpenc and rasta, while an interleaving factor
of 2 bytes has been used in g721dec, g721enc, gsmdec, gsmenc,
pegwitdec and pegwitenc benchmarks. In case of jpegdec and
mpeg2dec, an interleaving factor different than their main data size
has been used because 4-byte accesses are also common. Using a
different interleaving factor only implies a change in the cache
indexing function.

We have evaluated the performance of a word-interleaved cache
clustered VLIW processor with the proposed solutions (MDC and
DDGT) using the PrefClus and MinComs scheduling heuristics,
although these solutions can be also applied to any clustered VLIW
processor with a distributed data cache. The basic architectural
parameters in our simulations are summarized in Table 2. In all
cases, we have used as our baseline a word-interleaved cache clus-
tered VLIW processor with a scheduling algorithm that can freely
schedule memory instructions in any cluster using the MinComs
heuristic (which usually performs better than PrefClus). Note that
these baselines are optimistic (not real) since memory accesses may

reach the home cluster in any order and hence, data may be cor-
rupted1.

4.2. Evaluation of the proposed techniques

Local hit ratio

First, the impact of the proposed techniques on the local hit ratio
(the proportion of local hits versus other types of accesses) is stud-
ied. In Figure 6, memory accesses have been classified into local
hits, remote hits, local misses, remote misses and combined
accesses for the PrefClus scheduling heuristic. Combined accesses
are accesses to subblocks that have been already requested and are
still pending, and hence the second request is not issued. These
combined accesses can result in hits or misses and they have just
been counted as a separate group. The y-axis represents the ratio of
all memory accesses. For each benchmark three bars are drawn.
From left to right, these bars represent the results of the proposed
PrefClus scheduling algorithm with: (i) no memory dependence
restrictions when assigning instructions to clusters (memory
instructions are freely scheduled in their preferred cluster), (ii) the
MDC solution, where memory dependent chains are built, and (iii)
the DDGT solution.

As it can be seen, the construction of memory dependent chains
has an important impact in the ratio of local versus remote accesses
in some benchmarks. For example, in benchmark epicdec, the local
hit ratio drops from 60% when memory dependence restrictions are
not considered to 24% with MDC. On average, the local hit ratio is
reduced from 62.5% to 53.2%. On the other hand, with DDGT,
local hits are maximized because all loads are scheduled in their
preferred cluster and all replicated stores result in local store oper-
ations. Hence, it is not surprising that in general, the DDGT solu-
tion increases the number of local accesses even when compared to
the approach where memory dependence restrictions are not con-
sidered. On average, the local hit ratio is increased by 15% with
DDGT compared to the MDC solution.

Similar results are obtained with the MinComs scheduling heu-
ristic but with lower local hit ratios, since the preferred cluster

Profile data set Execution data set Main data size

epicdec test_image.pgm.E titanic3.pgm.E 4 bytes (84%)

epicenc test_image titanic3.pgm 4 bytes (89%)

g721dec clinton.g721 S_16_44.g721 2 bytes (89%)

g721enc clinton.pcm S_16_44.pcm 2 bytes (91.7%)

gsmdec clint.pcm.run.gsm S_16_44.pcm.gsm 2 bytes (99%)

gsmenc clinton.pcm S_16_44.pcm 2 bytes (99%)

jpegdec testimg.jpg monalisa.jpg 1 byte (53%)

jpegenc testimg.ppm monalisa.ppm 4 bytes (70%)

mpeg2dec mei16v2.m2v tek6.m2v 8 bytes (49%)

pegwitdec pegwit.enc tech_rep.txt.enc 2 bytes (75.8%)

pegwitenc pgptest.plain tech_rep.txt 2 bytes (83.6%)

pgpdec pgptext.pgp tech_rep.txt.enc 4 bytes (92.1%)

pgpenc pgptest.plain tech_rep.txt 4 bytes (73.2%)

rasta ex5_c1.wav ex5_c1.wav 4 bytes (95%)

Table 1. Benchmarks and inputs used in simulations.
‘tech_rep.txt’ is a text version of a technical report sim-
ilar to this paper.

Number of clusters 4

Functional Units
1 FP / cluster + 1 Integer / cluster

+ 1 Memory / cluster

Cache parameters
8KB total (four 2KB cache modules)
32 byte blocks, 2-way set-associative

1 cycle latency

Register-to-register
communication buses

4 buses that
run at 1/2 of the core frequency

Memory buses 4 buses that
run at 1/2 of the core frequency

Next Memory Level
parameters

4 ports + 10 cycle total latency
always hit

Table 2. Configuration parameters.

1. Although we guarantee memory coherence in our simulations because they are
trace driven.

Proceedings of the International Symposium on Code Generation and Optimization (CGO’03)
0-7695-1913-X/03 $17.00 © 2003 IEEE

information is just used in a post-pass phase when assigning
instructions to clusters.

Execution time

Next, the execution time of the proposed scheduling techniques has
been evaluated. In Figure 7, the y-axis represents cycle count results
for the different scheduling heuristics. In particular, four bars are
depicted for each benchmark. These are, from left to right: (i) cycle
count results for MDC with PrefClus, (ii) cycle count results for
MDC with MinComs, (iii) cycle count results for DDGT with Pref-
Clus, and (iv) cycle count results for DDGT with MinComs. All
results are normalized to results obtained with MinComs where
memory dependences have not been considered when assigning
instructions to clusters (memory instructions are freely scheduled in
any cluster). Cycles have been divided in compute cycles (compute
time, shaded parts) and stall cycles (stall time, white parts). Stall
time is basically due to memory instructions that have been sched-
uled too close to their consumers.

The DDGT solution tends to reduce stall time since memory
instructions can be freely scheduled in any cluster and, in conse-
quence, local hits are increased as we have seen earlier. In particu-
lar, stall time is reduced by 32% when PrefClus is used compared
to the MDC solution, while it is hardly reduced when MinComs is
used instead. On the other hand, the DDGT solution increases com-
pute time. Compute time is increased by 11% when PrefClus is
used and by 10% when MinComs is used instead. Overall, the MDC
solution tends to show better cycle count results since the reduction
in compute time is bigger than the increase in stall time.

However, no solution is always better. For example, the DDGT
solution with PrefClus outperforms the rest heuristics in bench-
marks epicdec and pgpdec, while the MDC solution with MinComs
outperforms the rest in benchmarks jpegenc, pegwitdec, pgpenc and
rasta. In addition, a similar behavior is observed if individual loops
are compared. For example, one loop in gsmdec has an execution
time of 1.99M cycles with the MDC solution and PrefClus (divided
in 1.28M cycles of compute time and 701K cycles of stall time),
while the execution time with the DDGT solution drops to 1.28M
cycles because stall time is reduced to 0 cycles (a speedup of 36%
is observed).

Analyzing the MDC solution

From the previous results it can be observed that even though the
MDC solution seems to be conservative, it works very well on aver-
age and results are close to those of a configuration where memory
dependences are not considered in the cluster assignment process.
In order to understand such behavior the size of memory dependent
chains has been computed. In Table 3, two ratios have been com-
puted for each benchmark:

• The biggest Chain over Memory instructions Ratio (CMR),
which is the ratio between the number of dynamic memory
instructions in the biggest chain of each graph (loop) and the
total number of dynamic memory instructions.

• The biggest Chain over All instructions Ratio (CAR), which
is the ratio between the number of dynamic memory instruc-
tions in the biggest chain of each graph (loop) and the total
number of dynamic instructions (memory and non-memory

ep
ic

de
c

g7
21

de
c

g7
21

en
c

gs
m

de
c

gs
m

en
c

jp
eg

de
c

jp
eg

en
c

m
pe

g2
de

c

pe
gw

itd
ec

pe
gw

ite
nc

pg
pd

ec

pg
pe

nc

ra
st

a

A
M

E
A

N

0.0

0.5

1.0
m

em
or

y
ac

ce
ss

es
combined

remote misses

local misses

remote hits

local hits

Figure 6. Classification of memory accesses for the PrefClus heuristic. From left to right, each column represents the
results for: (i) no memory dependences restrictions, (ii) the MDC solution, and (iii) the DDGT solution. AMEAN
stands for arithmetic mean.

ep
ic

de
c

g7
21

de
c

g7
21

en
c

gs
m

de
c

gs
m

en
c

jp
eg

de
c

jp
eg

en
c

m
pe

g2
de

c

pe
gw

itd
ec

pe
gw

ite
nc

pg
pd

ec

pg
pe

nc

ra
st

a

A
M

E
A

N

0.0

0.5

1.0

ex
ec

ut
io

n
cy

cl
es

stall time
MDC(PrefClus)
MDC(MinComs)
DDGT(PrefClus)
DDGT(MinComs)

Figure 7. Execution time results for the different solutions and heuristics. AMEAN stands for arithmetic mean.

Proceedings of the International Symposium on Code Generation and Optimization (CGO’03)
0-7695-1913-X/03 $17.00 © 2003 IEEE

ones). By definition, CAR will always be smaller than CMR,
since in both cases the numerator is the same.

There are some benchmarks where memory dependent chains
are important with respect to all dynamic memory instructions. For
example, in epicdec, 64% of all dynamic memory instructions
belong to the biggest dependent chain in each loop, while in the
case of jpegdec this number is 46%. However, out of all these
benchmarks, just a few of them have an important CAR ratio which
indicates that normally, the proportion of the biggest chain with
respect to the total number of dynamic instructions is low. This is
important for balancing the workload of instructions among clus-
ters and explains why the MDC solution shows results close to the
baseline.

Analyzing the DDGT solution

On the other hand, the DDGT solution tends to increase compute
time as it has been previously observed. Compute time may be
increased due to the additional number of register-to-register com-
munication operations when store instructions are replicated. In the
first column of Table 4 the ratio of additional communication oper-
ations for PrefClus is shown for each benchmark compared to the
MDC solution using the same heuristic. Even though the number of
communication operations is increased significally (except in
gsmenc), the benchmarks were simulated using an upper bound of
32 register-to-register buses and compute time was not reduced
much. Thus, when 4 buses are used with a 2-cycle latency, the bot-
tleneck of the DDGT solution is not the number of additional regis-
ter-to-register communication operations but the extra store
instructions and the additional edges added to the graph after all
transformations have been applied1.

However, even though the MDC solution is often better than the
DDGT solution, the later outperforms the former in several loops.
Hence, the DDGT solution could be used as an alternative in those
loops where memory dependent chains are big. For example, results
for some selected loops have been gathered in Table 4. In particular,
results for loops that satisfy the following condition with PrefClus
are shown: loops that have at least a 10% slowdown with MDC
compared to an optimistic solution where memory dependent
chains are not built (baseline). Speedups (or slowdowns in some
cases) show the effectiveness of DDGT over MDC in these partic-
ular loops (columns labeled as “Speedup selected loops”, where a

dash line is pictured in those cases where no loops satisfied the con-
dition). As it can be observed, the speedup of DDGT over MDC in
some benchmarks is significant for the selected loops: from 4% in
pgpdec to 30% in gsmenc.

Other architectural configurations

Finally, the same benchmarks have been simulated with two other
architectural configurations, where the number and latency of the
buses have been varied. These two other configurations are as fol-
lows:

• Unbalanced configuration with more memory buses than reg-
ister buses (referred to as NOBAL+MEM): four 2-cycle
latency memory buses and two 4-cycle latency register-to-
register buses.

• Unbalanced configuration with more register buses than
memory buses (referred to as NOBAL+REG): two 4-cycle
latency memory buses and four 2-cycle latency register-to-
register buses.

For the NOBAL+MEM configuration, the MDC solution
always outperforms the DDGT solution since the register-to-regis-
ter communication buses become an overloaded resource. On the
other hand, for NOBAL+REG, the DDGT solution using the Pref-
Clus heuristic outperforms all other options in some benchmarks.
For example, the speedup of the DDGT solution using the PrefClus
heuristic over the best MDC result is 17% for epicdec, 20% for pgp-
dec, 9% for pgpenc and 8% for rasta. These speedups are obviously
increased when the number of memory buses is reduced from two
to one.

5. Interaction with Attraction Buffers

The performance of a word-interleaved cache cluster VLIW proces-
sor can be improved by the use of small buffers that allow some data
replication [10]. In this section, after a brief introduction of these
buffers, the proposed MDC and DDGT solutions are evaluated with
such a scheme.

5.1. Attraction Buffers

Attraction Buffers are an effective hardware mechanism to reduce
stall time in a clustered processor with a word-interleaved cache.
The idea is to use some small buffers in each cluster that act as

CMR CAR CMR CAR

epicdec 0.64 0.22 mpeg2dec 0.13 0.05

g721dec 0 0 pegwitdec 0.27 0.07

g721enc 0 0 pegwitenc 0.35 0.09

gsmdec 0.18 0.02 pgpdec 0.73 0.24

gsmenc 0.08 0.01 pgpenc 0.63 0.21

jpegdec 0.46 0.09 rasta 0.52 0.26

jpegenc 0.07 0.03

Table 3. Analyzing the MDC solution.

1. The number of additional consumers (fake consumers) is low and it has a negli-
gible impact in the results.

∆ com.
ops

Speedup
selected

loops

∆ com.
ops

Speedup
selected

loops

epicdec 7.39 18.3% mpeg2dec 1.05 -

g721dec 1 - pegwitdec 1.02 6.2%

g721enc 1 - pegwitenc 1.29 7.5%

gsmdec 1.06 0% pgpdec 1.82 4.1%

gsmenc 0.86 30.2% pgpenc 1.80 4.1%

jpegdec 1.31 0% rasta 1.66 10.7%

jpegenc 1.05 -16.4%

Table 4. Analyzing the DDGT solution.

Proceedings of the International Symposium on Code Generation and Optimization (CGO’03)
0-7695-1913-X/03 $17.00 © 2003 IEEE

cache memories to hold remote data. When a cluster issues a remote
request to another cluster, the whole remote subblock is returned
and not only the requested word. The subblock is then cached in the
Attraction Buffer and subsequent accesses to it may be satisfied
locally. An example can be seen in Figure 8, where a load to a[3]
scheduled in cluster 1 attracts the whole remote subblock (elements
a[3] and a[7]) to the local Attraction Buffer (the subblock is repli-
cated). Subsequent accesses to these elements will be satisfied
locally in cluster 1 if the subblock is not replaced from the buffer. It
has been observed that 2-way set-associative Attraction Buffers of
16 entries are able to reduce stall time by 30% in a clustered proces-
sor with a word-interleaved cache [10][11].

However, the use of such buffers has an important drawback:
coherence. If remote subblocks are cached in the Attraction Buff-
ers, there may exist multiple copies of the same data block and
coherence among them must be guaranteed somehow. In the next
subsections this problem is explored for the two proposed tech-
niques: MDC and DDGT.

5.2. Adapting the MDC solution

When memory dependent instructions are scheduled in the same
cluster, data will be replicated in only one cluster if it is modified
and it will not collide with other accesses scheduled in other clus-
ters. In addition, if the same data is replicated in different Attraction
Buffers, it will be replicated in a read-only manner. Hence, data can
be freely replicated within a loop because MDC guarantees coher-
ence inside a loop but not between loops. The solution to guarantee
coherence among loops is to flush the contents of the Attraction
Buffers (and update data in its corresponding home cluster if neces-
sary) once a loop finishes.

5.3. Adapting the DDGT solution

With DDGT, dependent stores are replicated in all clusters and local
instances execute while remote instances are nullified. However
each instance of a given store receives all its source operands
(address and value to be stored) by register-to-register communica-
tion operations. Hence, Attraction Buffers can be updated where
necessary. For example, given a store operation S that updates the
value in address A mapped in cluster 1, the instance of S in cluster

1 (the local instance) will do the local update while the remote
instances will update A in their local Attraction Buffers if A is
present there. Finally, in order to guarantee coherence between
loops, the contents of the buffers are flushed as well once a loop fin-
ishes.

5.4. Evaluation

In Figure 9, the y-axis represents cycle count results for the differ-
ent scheduling heuristics. In particular, four bars are depicted for
each benchmark. These are, from left to right: (i) cycle count results
for MDC with PrefClus, (ii) cycle count results for MDC with Min-
Coms, (iii) cycle count results for DDGT with PrefClus, and (iv)
cycle count results for DDGT with MinComs. All results are gath-
ered with 16-entry 2-way set associative Attraction Buffers and are
normalized to results obtained with MinComs and Attraction Buff-
ers where memory dependences have not been considered when
assigning instructions to clusters (memory instructions are freely
scheduled in any cluster).

The small replication capacity offered by the Attraction Buffers
is enough to increase the local hit ratio and, in consequence, reduce
stall time. Hence with such buffers, the MDC solution outperforms
the DDGT solution in all benchmarks with all heuristics except in
the epicdec and gsmdec benchmarks. In epicdec, an important loop
consists of 76 memory instructions which form a huge memory
dependent chain. If all these memory instructions are scheduled in
the same cluster with MDC, the Attraction Buffer in that cluster is
often overflown and data is not reused much. However, with DDGT,
memory instructions are spread among clusters and all Attraction
Buffers are used. Hence, these buffers are not overflown so often,
data is reused more and stall time is reduced. In particular, the local
hit ratio of this loop increases from 65% with MDC to 97% with
DDGT (the local hit ratio with MDC and no Attraction Buffers is
33%) and stall time is reduced from 805K cycles with MDC to
110K cycles with DDGT. Overall, the speedup of the loop with
DDGT is 24% with respect to MDC both with Attraction Buffers.

6. Further work

In this paper, two local scheduling techniques for a clustered pro-
cessor with a distributed data cache have been proposed and evalu-
ated. However, some modifications will have to be considered if
these techniques are applied as a global scheduling scheme. Con-
siderations such as synchronization points between loops or an
extension of the DDG transformations are left for future work.

In addition, a hybrid solution that combines the best of DDGT
and MDC will also be explored. While such a hybrid solution could
be used inside a loop (use MDC in some memory dependent chains
of a loop and DDGT in all other sets of memory dependent instruc-
tions), we have observed that loops tend to have 0 or 1 memory
dependent chain in the studied benchmarks. Hence, it seems that a
hybrid solution that worked on a loop basis could be as good as a
solution that worked at a finer granularity for these programs. For
example, the execution time of a loop with both solutions could be
estimated at compile time and the best solution could be chosen.

Finally, code specialization can also be applied to disambiguate
some memory dependences at execution time [3]. With such a tech-
nique, two versions of the same loop are provided, one assuming

a[3] a[7]

Func. Units
+ reg. file

Func. Units
+ reg. file

Func. Units
+ reg. file

Func. Units
+ reg. file

NEXT MEMORY LEVEL

a[7]a[3]

Cache
Module

Attraction
Buffer

a[4]a[0] a[6]a[2]

Module
Cache

Module
Cache

CLUSTER 1

a[5]a[1]

Module
Cache

CLUSTER 2 CLUSTER 3 CLUSTER 4

load a[3]

Figure 8. An example of a word-interleaved cache clustered
processor with Attraction Buffers.

Proceedings of the International Symposium on Code Generation and Optimization (CGO’03)
0-7695-1913-X/03 $17.00 © 2003 IEEE

memory dependences (restrictive) and another ignoring them
(aggressive). Check code is added at the beginning of the loop to
test whether these ambiguous dependences actually occur or not. In
the former case, the restrictive version of the loop is executed, while
in the latter, the aggressive version is used. We have applied this
technique by hand to some selected loops of epicdec, pgpdec, and
rasta (which are the benchmarks with bigger memory dependent
chains1), and have recomputed their CMR and CAR ratios (the ratio
of memory instructions in the longest memory dependent chain
over all other memory instructions and over all other types of
instructions, see Section 4.2). The old (before code specialization)
and new (after code specialization) CMR and CAR values can be
seen in Table 5.

As it can be seen, the proportion of memory instructions that
belong to the longest memory dependent chain is greatly reduced if
code specialization is applied. For example, the CMR ratio drops
from 0.64 to 0.20 in the epicdec benchmark. These numbers dem-
onstrate that some of the most restrictive memory dependences can
be eliminated at execution time and this will benefit the MDC solu-
tion over the DDGT solution. Thus, future work will include the
automation of this process that has been performed by hand in this
paper.

7. Related work

While several works exist in the literature on clustered VLIW pro-
cessors with a unified data cache ([18][19][22][13][7] among oth-
ers), few works exist on clustered VLIW processors with a
decentralized or distributed cache [2][23]. Among them, the Raw
project deals with the problem of memory coherence in deep detail.

However, a Raw machine has an architectural configuration differ-
ent than the traditional VLIW design used in this paper. In particu-
lar, a Raw machine consists of several identical units (clusters)
connected in a grid-based manner. Each of these units is referred to
as a tile and they are connected through a static network (whose
latency is known at compile time and its usage is controlled by the
compiler) and a dynamic network (whose latency is not known at
compile time). Memory instructions are divided in instructions that
perform static accesses (they always access data residing in the
same tile and this tile is known at compile time), and instructions
that perform dynamic accesses. Memory coherence is guaranteed
by explicit synchronization and software serial ordering. The
former uses a 2-step handshake algorithm between two dependent
memory instructions, one static and one dynamic. On the other
hand, software serial ordering guarantees coherence among
dynamic memory instructions. Such technique is similar to the
MDC solution: each group of potentially aliased memory instruc-
tions is assigned a turnstile node which is responsible to serialize
accesses to memory. However, both techniques complicate the
scheduling of memory instructions while the use of two intercon-
nection networks complicates the hardware.

The same problem was also studied in [25] for a superscalar
processor. A word-interleaved cache scheme for a clustered out-of-
order superscalar processor is explored where a bank predictor is
used to steer (assign) memory instructions to clusters at execution-
time. A technique similar to store replication is used to guarantee
coherence and store operations (and low-confident predicted loads)
are steered (assigned) to all clusters. Finally, coherence is also con-
trolled by the use of a Reorder Buffer and by avoiding loads to over-
pass stores with an unknown address.

Finally, the problem of memory coherence also appears in other
domains. Hardware cache coherence protocols are often used in
multiprocessors to guarantee the consistency of multiple copies of
the same data [24]. On the other hand, distributed shared memory
(DSM) software is used in multicomputers to offer a shared mem-
ory programming paradigm to programmers [15]. However, in both
cases, coherence is related not only with the serialization of con-
flicting memory accesses but also with handling multiple copies of
the same data. In addition, such systems execute multiple flows of
execution with explicit synchronization points provided by the pro-
grammer, while a traditional VLIW processor executes a single
flow of execution. Thus, the same techniques are not applicable.

1. We exclude pgpenc because its most important loops are similar to those of pg-
pdec and the application of the technique by hand is a tedious work. One can ex-
trapolate the pgpdec ratios for pgpenc as a good approximation.

OLD CMR OLD CAR NEW CMR NEW CAR

epicdec 0.64 0.22 0.20 0.06

pgpdec 0.73 0.24 0.52 0.17

rasta 0.52 0.26 0.13 0.06

Table 5. Restrictions of memory dependences before (OLD) and
after (NEW) applying code specialization.

ep
ic

de
c

g7
21

de
c

g7
21

en
c

gs
m

de
c

gs
m

en
c

jp
eg

de
c

jp
eg

en
c

m
pe

g2
de

c

pe
gw

itd
ec

pe
gw

ite
nc

pg
pd

ec

pg
pe

nc

ra
st

a

A
M

E
A

N

0.0

0.5

1.0
ex

ec
ut

io
n

cy
cl

es
stall time
MDC(PrefClus)
MDC(MinComs)
DDGT(PrefClus)
DDGT(MinComs)

Figure 9. Execution time results for the different solutions and heuristics using 16-entry 2-way set-associative Attraction
Buffers. AMEAN stands for arithmetic mean.

Proceedings of the International Symposium on Code Generation and Optimization (CGO’03)
0-7695-1913-X/03 $17.00 © 2003 IEEE

8. Conclusions

The distribution of the data cache in a clustered processor intro-
duces a memory coherence problem since memory instructions
may reach the cache in an order different to the sequential program
order. In this paper, two software solutions have been proposed and
explored: the construction of what we call memory dependent
chains (MDC solution), and two transformations (store replication
and load-store synchronization) applied to the original Data Depen-
dence Graph (DDGT solution). Both solutions have been evaluated
using a word-interleaved cache clustered VLIW processor,
although they are also valid solutions for any other distributed
cache configuration.

Results for the Mediabench benchmark suite demonstrate the
effectiveness of these techniques. In particular the MDC solution
tends to outperform the DDGT solution because the ratio of mem-
ory instructions inside a memory dependent chain over the rest of
the instructions is low (always below 0.26). However, speedups up
to 30% have been observed in some selected loops with DDGT over
MDC because stall time is greatly reduced with this technique.
Hence, the DDGT solution could be used as an alternative in those
loops where memory dependences are predominant. Finally, the
interaction of both solutions in a processor with Attraction Buffers
is studied. Results show that the MDC solution outperforms the
DDGT solution in all benchmarks except epicdec since Attraction
Buffers are already an effective mechanism to increase local
accesses and reduce stall time.

Acknowledgements

This work has been partially supported by El Ministerio de Ciencia
y Tecnologia and the European Union (FEDER funds) reference
TIC2001-0995-C02-01 and it has been developed using the
resources of CESCA and CEPBA. We would like to thank all
IMPACT group members at University of Illinois for their help.

References

[1] V. Agarwal, M.S. Hrishikesh, S.W. Keckler and D. Burger,
“Clock Rate versus IPC: The End of the Road For Conven-
tional Microarchitectures”, in Procs. of the 27th Int. Symp. on
Computer Architecture, pp. 248-259, June 2000

[2] R. Barua, W. Lee, S. Amarasinghe, and A. Agarwal, “Maps:
A Compiler-Managed Memory System for Raw Machines”,
Procs. of the 26th Int. Symp. on Computer Architecture, June
1999

[3] D. Bernstein, D. Cohen and D. Maydan, “Dynamic Memory
Disambiguation for Array References”, in Procs. of 27th Int.
Symp. on Microarchitecture, pp. 105-111, Nov. 1994

[4] P.P. Chang, S.A. Mahlke, W.Y. Chen, N.J. Water, and W.W.
Hwu, "IMPACT: An Architectural Framework for Multiple-
Instruction-Issue Processors", in Procs. of the 18th Int. Symp.
on Computer Architecture, pp. 266-275, May 1991

[5] A. Charlesworth, “An Approach to Scientific Array Process-
ing: The Architectural Design of the AP120B/FPS-164 Fam-
ily”, in Computer, 14(9), pp.18-27, 1981

[6] B. Cheng, “Compile-Time Memory Disambiguation for C
Programs”, PhD thesis, Dept. of Computer Science, Univer-
sity of Illinois, May 2000

[7] J. M. Codina, J. Sánchez and A. González, “A Unified Mod-
ulo Scheduling and Register Allocation Technique for Clus-
tered Processors”, in Procs. of Int. Conf. on Parallel
Architectures and Compilation Techniques, Sept. 2001

[8] P. Faraboschi, G. Brown, J. Fisher, G. Desoli and F. Home-
wood, “Lx: A Technology Platform for Customizable VLIW
Embedded Processing”, in Procs. of the 27th Int. Symp. on
Computer Architecture, pp. 203-213, June 2000

[9] J. Fridman and Zvi Greefield, “The TigerSharc DSP Architec-
ture”, IEEE Micro, pp. 66-76, Jan-Feb. 2000

[10] E. Gibert, J. Sánchez and A. González, “An Interleaved Cache
Clustered VLIW Processor”, in Procs. of Int. Conf. on Super-
computing, pp. 210-219, June 2002.

[11] E. Gibert, J. Sánchez and A. González, “Effective Instruction
Scheduling Techniques for an Interleaved Cache Clustered
VLIW Processor”, in Procs. of 35th Int. Symp. on Microarchi-
tecture, November 2002.

[12] L. Gwennap, “Digital 21264 Sets New Standard”, Micropro-
cessor Report, 10(14), Oct. 1996

[13] K. Kailas, K. Ebcioglu and A. Agrawala, “CARS: A New
Code Generation Framework for Clustered ILP Processors”,
in Procs. of the 7th Int. Symp. on High-Performance Com-
puter Architecture, Jan. 2001

[14] C. Lee, M. Potkonjak, and W.H. Mangione-Smith, “Media-
Bench: a Tool for Evaluating and Synthesizing Multimedia
and Communication Systems”, in Procs. of Int. Symp. on
Microarchitecture, pp. 330-335, Dec. 1997

[15] K. Li, “IVY: A Shared Virtual Memory System for Parallel
Computing”, in Procs. of Int. Conf. on Parallel Processing,
Aug. 1988

[16] J. Llosa, A. González, E. Ayguadé and M. Valero, “Swing
Modulo Scheduling”, in Procs. of Int. Conf. on Parallel Archi-
tectures and Compilation Techniques, pp.80-86, Oct. 1996

[17] S. A. Mahlke, D. C. Lin, W. Y. Chen, R. E. Hank, and R. A.
Bringmann, “Effective Compiler Support for Predicated Exe-
cution Using the Hyperblock “, in Procs. of 25th Int. Symp. on
Microarchitecture, pp. 45-54, Dec. 1992

[18] E. Nystrom and A. E. Eichenberger, “Effective Cluster
Assignment for Modulo Scheduling”, in Procs. of the 31st Int.
Symp. on Microarchitecture, pp. 103-114, 1998

[19] E. Özer, S. Banerjia, T.M. Conte, “Unified Assign and Sched-
ule: A New Approach to Scheduling for Clustered Register
File Microarchitectures”, in Procs. of 31st Symp. on Microar-
chitecture, Nov. 1998

[20] S. Palacharla, N.P. Jouppi, and J.E. Smith, “Complexity-
Effective Superscalar Processors”, in Procs. of the 24th Int.
Symp. on Computer Architecture, pp. 1-13, June 1997

[21] J. Sánchez and A. González, “Cache Sensitive Modulo Sched-
uling”, in Procs. of 30th Int. Symp. on Microarchitecture, pp.
338-348, Dec. 1997

[22] J. Sánchez and A. González, “The Effectiveness of Loop
Unrolling for Modulo Scheduling in Clustered VLIW Archi-
tectures”, in Procs. of the 29th Int. Conf. on Parallel Process-
ing, Aug. 2000

[23] J. Sánchez, and A. González, “Modulo Scheduling for a
Fully-Distributed Clustered VLIW Architecture”, in Procs. of
33rd Int. Symp. on Microarchitecture, Dec. 2000

[24] M. Tomasevic, and V. Milutinovic, “Hardware Approaches to
Cache Coherence in Shared-Memory Multiprocessors”, IEEE
Micro, vol. 14, no. 5 and 6, Oct. and Dec. 1994

[25] V. V. Zyuban, “Inherently lower-power high-performance
superscalar architectures”, PhD thesis, Dept. of Computer
Science and Engineering, Univ. of Notre Dame, March 2000

Proceedings of the International Symposium on Code Generation and Optimization (CGO’03)
0-7695-1913-X/03 $17.00 © 2003 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

