4 research outputs found

    Boosting Generalization in Bio-Signal Classification by Learning the Phase-Amplitude Coupling

    Full text link
    Various hand-crafted features representations of bio-signals rely primarily on the amplitude or power of the signal in specific frequency bands. The phase component is often discarded as it is more sample specific, and thus more sensitive to noise, than the amplitude. However, in general, the phase component also carries information relevant to the underlying biological processes. In fact, in this paper we show the benefits of learning the coupling of both phase and amplitude components of a bio-signal. We do so by introducing a novel self-supervised learning task, which we call Phase-Swap, that detects if bio-signals have been obtained by merging the amplitude and phase from different sources. We show in our evaluation that neural networks trained on this task generalize better across subjects and recording sessions than their fully supervised counterpart.Comment: Accepted at GCPR 202

    Multi-scale convolutional recurrent neural network for psychiatric disorder identification in resting-state EEG

    Get PDF
    BackgroundAccurate classification based on affordable objective neuroimaging biomarkers are important steps toward designing individualized treatment.MethodsIn this work, we investigated a deep learning classification model, multi-scale convolutional recurrent neural network (MCRNN), to explore psychiatric disorder-related biomarkers by leveraging the spatiotemporal information of resting-state EEG (rsEEG) using a multiple psychiatric disorder database containing 327 individuals diagnosed with schizophrenia, bipolar, major depressive disorders, and healthy controls. All subjects were mapped to a shared low-dimensional subspace for intuitively interpreting the inter-relationship and separation of psychiatric disorders.ResultsPsychiatric disorders were identified using rsEEG with high accuracy ranged from 78.6 to 91.3% in patient vs. controls two-class classification, and 68.2% in four-class classification. The control-to-schizophrenia trajectory interpretated by the model was consistent with the disease severity in clinical observation.ConclusionThe MsRNN demonstrated a capability in extracting discriminative rsEEG biomarkers for psychiatric disorder classification, indicating its potential to facilitate our understanding of psychiatric disorders and monitoring interventions

    Dynamic low frequency EEG phase synchronization patterns during proactive control of task switching.

    No full text
    [eng]Cognitive flexibility is critical for humans living in complex societies with ever-growing multitasking demands. Yet the low-frequency neural dynamics of distinct task-specific and domain-general mechanisms sub-serving mental flexibility are still ill-defined. Here we estimated phase electroencephalogram synchronization by using inter-trial phase coherence (ITPC) at the source space while twenty six young participants were intermittently cued to switch or repeat their perceptual categorization rule of Gabor gratings varying in color and thickness (switch task). Therefore, the aim of this study was to examine whether a proactive control is associated with connectivity only in the frontoparietal theta network, or also involves distinct neural connectivity within the delta band, as distinct neural signatures while preparing to switch or repeat a task set, respectively. To this end, we focused the analysis on late-latencies (from 500 to 800 msec post-cue onset), since they are known to be associated with top-down cognitive control processes. We confirmed that proactive control during a task switch was associated with frontoparietal theta connectivity. But importantly, we also found a distinct role of delta band oscillatory synchronization in proactive control, engaging more posterior frontotemporal regions as opposed to frontoparietal theta connectivity. Additionally, we built a regression model by using the ITPC results in delta and theta bands as predictors, and the behavioral accuracy in the switch task as the criterion, obtaining significant results for both frequency bands. All these findings support the existence of distinct proactive cognitive control processes related to functionally distinct though highly complementary theta and delta frontoparietal and temporoparietal oscillatory networks at late-latency temporal scales

    EEG, MEG and neuromodulatory approaches to explore cognition: Current status and future directions

    Full text link
    Neural oscillations and their association with brain states and cognitive functions have been object of extensive investigation over the last decades. Several electroencephalography (EEG) and magnetoencephalography (MEG) analysis approaches have been explored and oscillatory properties have been identified, in parallel with the technical and computational advancement. This review provides an up-to-date account of how EEG/MEG oscillations have contributed to the understanding of cognition. Methodological challenges, recent developments and translational potential, along with future research avenues, are discussed. Keywords: Cognition; Electrophysiology; Event-related-potentials; Neural oscillations; Neural synchronisation; Neuromodulatio
    corecore