4,278 research outputs found

    B+-tree Index Optimization by Exploiting Internal Parallelism of Flash-based Solid State Drives

    Full text link
    Previous research addressed the potential problems of the hard-disk oriented design of DBMSs of flashSSDs. In this paper, we focus on exploiting potential benefits of flashSSDs. First, we examine the internal parallelism issues of flashSSDs by conducting benchmarks to various flashSSDs. Then, we suggest algorithm-design principles in order to best benefit from the internal parallelism. We present a new I/O request concept, called psync I/O that can exploit the internal parallelism of flashSSDs in a single process. Based on these ideas, we introduce B+-tree optimization methods in order to utilize internal parallelism. By integrating the results of these methods, we present a B+-tree variant, PIO B-tree. We confirmed that each optimization method substantially enhances the index performance. Consequently, PIO B-tree enhanced B+-tree's insert performance by a factor of up to 16.3, while improving point-search performance by a factor of 1.2. The range search of PIO B-tree was up to 5 times faster than that of the B+-tree. Moreover, PIO B-tree outperformed other flash-aware indexes in various synthetic workloads. We also confirmed that PIO B-tree outperforms B+-tree in index traces collected inside the Postgresql DBMS with TPC-C benchmark.Comment: VLDB201

    Improving the Performance and Endurance of Persistent Memory with Loose-Ordering Consistency

    Full text link
    Persistent memory provides high-performance data persistence at main memory. Memory writes need to be performed in strict order to satisfy storage consistency requirements and enable correct recovery from system crashes. Unfortunately, adhering to such a strict order significantly degrades system performance and persistent memory endurance. This paper introduces a new mechanism, Loose-Ordering Consistency (LOC), that satisfies the ordering requirements at significantly lower performance and endurance loss. LOC consists of two key techniques. First, Eager Commit eliminates the need to perform a persistent commit record write within a transaction. We do so by ensuring that we can determine the status of all committed transactions during recovery by storing necessary metadata information statically with blocks of data written to memory. Second, Speculative Persistence relaxes the write ordering between transactions by allowing writes to be speculatively written to persistent memory. A speculative write is made visible to software only after its associated transaction commits. To enable this, our mechanism supports the tracking of committed transaction ID and multi-versioning in the CPU cache. Our evaluations show that LOC reduces the average performance overhead of memory persistence from 66.9% to 34.9% and the memory write traffic overhead from 17.1% to 3.4% on a variety of workloads.Comment: This paper has been accepted by IEEE Transactions on Parallel and Distributed System

    LogBase: A Scalable Log-structured Database System in the Cloud

    Full text link
    Numerous applications such as financial transactions (e.g., stock trading) are write-heavy in nature. The shift from reads to writes in web applications has also been accelerating in recent years. Write-ahead-logging is a common approach for providing recovery capability while improving performance in most storage systems. However, the separation of log and application data incurs write overheads observed in write-heavy environments and hence adversely affects the write throughput and recovery time in the system. In this paper, we introduce LogBase - a scalable log-structured database system that adopts log-only storage for removing the write bottleneck and supporting fast system recovery. LogBase is designed to be dynamically deployed on commodity clusters to take advantage of elastic scaling property of cloud environments. LogBase provides in-memory multiversion indexes for supporting efficient access to data maintained in the log. LogBase also supports transactions that bundle read and write operations spanning across multiple records. We implemented the proposed system and compared it with HBase and a disk-based log-structured record-oriented system modeled after RAMCloud. The experimental results show that LogBase is able to provide sustained write throughput, efficient data access out of the cache, and effective system recovery.Comment: VLDB201

    Leveraging Non-Volatile Memory in Modern Storage Management Architectures

    Get PDF
    Non-volatile memory technologies (NVM) introduce a novel class of devices that combine characteristics of both storage and main memory. Like storage, NVM is not only persistent, but also denser and cheaper than DRAM. Like DRAM, NVM is byte-addressable and has lower access latency. In recent years, NVM has gained a lot of attention both in academia and in the data management industry, with views ranging from skepticism to over excitement. Some critics claim that NVM is not cheap enough to replace flash-based SSDs nor is it fast enough to replace DRAM, while others see it simply as a storage device. Supporters of NVM have observed that its low latency and byte-addressability requires radical changes and a complete rewrite of storage management architectures. This thesis takes a moderate stance between these two views. We consider that, while NVM might not replace flash-based SSD or DRAM in the near future, it has the potential to reduce the gap between them. Furthermore, treating NVM as a regular storage media does not fully leverage its byte-addressability and low latency. On the other hand, completely redesigning systems to be NVM-centric is impractical. Proposals that attempt to leverage NVM to simplify storage management result in completely new architectures that face the same challenges that are already well-understood and addressed by the traditional architectures. Therefore, we take three common storage management architectures as a starting point, and propose incremental changes to enable them to better leverage NVM. First, in the context of log-structured merge-trees, we investigate the impact of storing data in NVM, and devise methods to enable small granularity accesses and NVM-aware caching policies. Second, in the context of B+Trees, we propose to extend the buffer pool and describe a technique based on the concept of optimistic consistency to handle corrupted pages in NVM. Third, we employ NVM to enable larger capacity and reduced costs in a index+log key-value store, and combine it with other techniques to build a system that achieves low tail latency. This thesis aims to describe and evaluate these techniques in order to enable storage management architectures to leverage NVM and achieve increased performance and lower costs, without major architectural changes.:1 Introduction 1.1 Non-Volatile Memory 1.2 Challenges 1.3 Non-Volatile Memory & Database Systems 1.4 Contributions and Outline 2 Background 2.1 Non-Volatile Memory 2.1.1 Types of NVM 2.1.2 Access Modes 2.1.3 Byte-addressability and Persistency 2.1.4 Performance 2.2 Related Work 2.3 Case Study: Persistent Tree Structures 2.3.1 Persistent Trees 2.3.2 Evaluation 3 Log-Structured Merge-Trees 3.1 LSM and NVM 3.2 LSM Architecture 3.2.1 LevelDB 3.3 Persistent Memory Environment 3.4 2Q Cache Policy for NVM 3.5 Evaluation 3.5.1 Write Performance 3.5.2 Read Performance 3.5.3 Mixed Workloads 3.6 Additional Case Study: RocksDB 3.6.1 Evaluation 4 B+Trees 4.1 B+Tree and NVM 4.1.1 Category #1: Buffer Extension 4.1.2 Category #2: DRAM Buffered Access 4.1.3 Category #3: Persistent Trees 4.2 Persistent Buffer Pool with Optimistic Consistency 4.2.1 Architecture and Assumptions 4.2.2 Embracing Corruption 4.3 Detecting Corruption 4.3.1 Embracing Corruption 4.4 Repairing Corruptions 4.5 Performance Evaluation and Expectations 4.5.1 Checksums Overhead 4.5.2 Runtime and Recovery 4.6 Discussion 5 Index+Log Key-Value Stores 5.1 The Case for Tail Latency 5.2 Goals and Overview 5.3 Execution Model 5.3.1 Reactive Systems and Actor Model 5.3.2 Message-Passing Communication 5.3.3 Cooperative Multitasking 5.4 Log-Structured Storage 5.5 Networking 5.6 Implementation Details 5.6.1 NVM Allocation on RStore 5.6.2 Log-Structured Storage and Indexing 5.6.3 Garbage Collection 5.6.4 Logging and Recovery 5.7 Systems Operations 5.8 Evaluation 5.8.1 Methodology 5.8.2 Environment 5.8.3 Other Systems 5.8.4 Throughput Scalability 5.8.5 Tail Latency 5.8.6 Scans 5.8.7 Memory Consumption 5.9 Related Work 6 Conclusion Bibliography A PiBenc

    Letter from the Special Issue Editor

    Get PDF
    Editorial work for DEBULL on a special issue on data management on Storage Class Memory (SCM) technologies

    Customized Interfaces for Modern Storage Devices

    Get PDF
    In the past decade, we have seen two major evolutions on storage technologies: flash storage and non-volatile memory. These storage technologies are both vastly different in their properties and implementations than the disk-based storage devices that current soft- ware stacks and applications have been built for and optimized over several decades. The second major trend that the industry has been witnessing is new classes of applications that are moving away from the conventional ACID (SQL) database access to storage. The resulting new class of NoSQL and in-memory storage applications consume storage using entirely new application programmer interfaces than their predecessors. The most significant outcome given these trends is that there is a great mismatch in terms of both application access interfaces and implementations of storage stacks when consuming these new technologies. In this work, we study the unique, intrinsic properties of current and next-generation storage technologies and propose new interfaces that allow application developers to get the most out of these storage technologies without having to become storage experts them- selves. We first build a new type of NoSQL key-value (KV) store that is FTL-aware rather than flash optimized. Our novel FTL cooperative design for KV store proofed to simplify development and outperformed state of the art KV stores, while reducing write amplification. Next, to address the growing relevance of byte-addressable persistent memory, we build a new type of KV store that is customized and optimized for persistent memory. The resulting KV store illustrates how to program persistent effectively while exposing a simpler interface and performing better than more general solutions. As the final component of the thesis, we build a generic, native storage solution for byte-addressable persistent memory. This new solution provides the most generic interface to applications, allow- ing applications to store and manipulate arbitrarily structured data with strong durability and consistency properties. With this new solution, existing applications as well as new “green field” applications will get to experience native performance and interfaces that are customized for the next storage technology evolution
    corecore