234 research outputs found

    Design and implementation of a secure and user-friendly broker platform supporting the end-to-end provisioning of e-homecare services

    Get PDF
    We designed a broker platform for e-homecare services using web service technology. The broker allows efficient data communication and guarantees quality requirements such as security, availability and cost-efficiency by dynamic selection of services, minimizing user interactions and simplifying authentication through a single user sign-on. A prototype was implemented, with several e-homecare services (alarm, telemonitoring, audio diary and video-chat). It was evaluated by patients with diabetes and multiple sclerosis. The patients found that the start-up time and overhead imposed by the platform was satisfactory. Having all e-homecare services integrated into a single application, which required only one login, resulted in a high quality of experience for the patients

    Dynamic homecare service provisioning: a field test and its results

    Get PDF
    Providing IT-based care support for elderly at home is proposed as a highly promising appraoch to address the aging population problem. With the emergence of homecare application service providers, a homecare system can be seen as a linked set of services. Configuring and composing existing homecare application services to create new homecare composite applications can reduce the application development cost. The idea even looks more promising if the service provisioning is dynamic, i.e., if applications can update their behaviors with respect to the contextual changes without or with minimum manpower. Dynamic service provisioning can play an important role to accept homecare systems in practical settings. This motivated us to develop a Dynamic Homecare Service Provisioning (DHSP) platform to address the homecare context changes in an effective and efficient manner. As a proof of concept, we have developed a software prototype of our platform. The prototype was subsequently used in a real-world field test at a care institution in the Netherlands to validate the approach. This paper describes the design of the field test and reflects on the outcome of the validation experiments

    Personalized Service Creation by Non-technical Users in the Homecare Domain

    Get PDF
    AbstractOne of the conditions for the successful introduction of ICT-based homecare services is to allow non-technical persons such as home nurses to personalize these services. We refer to this process of homecare service personalization as service tailoring. Service tailoring can be done by configuring and composing previously developed and deployed service building blocks. In this paper, we describe an approach that employs predefined information of care-receivers, called user profile, to hide most of the technical details from care-givers who do the service tailoring. First, we define the information to be included in a user profile and patterns that represent composition structures corresponding to common homecare tasks experienced in homecare. Then, we define how the service tailoring process can exploit information contained in the predefined user profiles. After that, we illustrate the approach with a tailoring scenario

    Service Tailoring: Towards Personalized homecare Systems

    Get PDF
    Health monitoring and healthcare provisioning for the elderly at home have received increasingly attention. Since each elderly person is unique, with a unique lifestyle, living environment and health condition, personalization is an essential feature of homecare software services. Service tailoring, which is creating a new service to meet individual requirements may be achieved in a cost-effective and time-efficient manner if new services can be configured and composed from already existing services. In this paper, we propose an effective service tailoring process and architecture to personalize homecare services according to the individual care-receiver’s needs. In addition, we present a scenario to highlight the need for service tailoring and to demonstrate the feasibility of the proposed approach

    Ambient-aware continuous care through semantic context dissemination

    Get PDF
    Background: The ultimate ambient-intelligent care room contains numerous sensors and devices to monitor the patient, sense and adjust the environment and support the staff. This sensor-based approach results in a large amount of data, which can be processed by current and future applications, e. g., task management and alerting systems. Today, nurses are responsible for coordinating all these applications and supplied information, which reduces the added value and slows down the adoption rate. The aim of the presented research is the design of a pervasive and scalable framework that is able to optimize continuous care processes by intelligently reasoning on the large amount of heterogeneous care data. Methods: The developed Ontology-based Care Platform (OCarePlatform) consists of modular components that perform a specific reasoning task. Consequently, they can easily be replicated and distributed. Complex reasoning is achieved by combining the results of different components. To ensure that the components only receive information, which is of interest to them at that time, they are able to dynamically generate and register filter rules with a Semantic Communication Bus (SCB). This SCB semantically filters all the heterogeneous care data according to the registered rules by using a continuous care ontology. The SCB can be distributed and a cache can be employed to ensure scalability. Results: A prototype implementation is presented consisting of a new-generation nurse call system supported by a localization and a home automation component. The amount of data that is filtered and the performance of the SCB are evaluated by testing the prototype in a living lab. The delay introduced by processing the filter rules is negligible when 10 or fewer rules are registered. Conclusions: The OCarePlatform allows disseminating relevant care data for the different applications and additionally supports composing complex applications from a set of smaller independent components. This way, the platform significantly reduces the amount of information that needs to be processed by the nurses. The delay resulting from processing the filter rules is linear in the amount of rules. Distributed deployment of the SCB and using a cache allows further improvement of these performance results
    • …
    corecore