5 research outputs found

    Optimization Models and Approximate Algorithms for the Aerial Refueling Scheduling and Rescheduling Problems

    Get PDF
    The Aerial Refueling Scheduling Problem (ARSP) can be defined as determining the refueling completion times for fighter aircrafts (jobs) on multiple tankers (machines) to minimize the total weighted tardiness. ARSP can be modeled as a parallel machine scheduling with release times and due date-to-deadline window. ARSP assumes that the jobs have different release times, due dates, and due date-to-deadline windows between the refueling due date and a deadline to return without refueling. The Aerial Refueling Rescheduling Problem (ARRP), on the other hand, can be defined as updating the existing AR schedule after being disrupted by job related events including the arrival of new aircrafts, departure of an existing aircrafts, and changes in aircraft priorities. ARRP is formulated as a multiobjective optimization problem by minimizing the total weighted tardiness (schedule quality) and schedule instability. Both ARSP and ARRP are formulated as mixed integer programming models. The objective function in ARSP is a piecewise tardiness cost that takes into account due date-to-deadline windows and job priorities. Since ARSP is NP-hard, four approximate algorithms are proposed to obtain solutions in reasonable computational times, namely (1) apparent piecewise tardiness cost with release time rule (APTCR), (2) simulated annealing starting from random solution (SArandom ), (3) SA improving the initial solution constructed by APTCR (SAAPTCR), and (4) Metaheuristic for Randomized Priority Search (MetaRaPS). Additionally, five regeneration and partial repair algorithms (MetaRE, BestINSERT, SEPRE, LSHIFT, and SHUFFLE) were developed for ARRP to update instantly the current schedule at the disruption time. The proposed heuristic algorithms are tested in terms of solution quality and CPU time through computational experiments with randomly generated data to represent AR operations and disruptions. Effectiveness of the scheduling and rescheduling algorithms are compared to optimal solutions for problems with up to 12 jobs and to each other for larger problems with up to 60 jobs. The results show that, APTCR is more likely to outperform SArandom especially when the problem size increases, although it has significantly worse performance than SA in terms of deviation from optimal solution for small size problems. Moreover CPU time performance of APTCR is significantly better than SA in both cases. MetaRaPS is more likely to outperform SAAPTCR in terms of average error from optimal solutions for both small and large size problems. Results for small size problems show that MetaRaPS algorithm is more robust compared to SAAPTCR. However, CPU time performance of SA is significantly better than MetaRaPS in both cases. ARRP experiments were conducted with various values of objective weighting factor for extended analysis. In the job arrival case, MetaRE and BestINSERT have significantly performed better than SEPRE in terms of average relative error for small size problems. In the case of job priority disruption, there is no significant difference between MetaRE, BestINSERT, and SHUFFLE algorithms. MetaRE has significantly performed better than LSHIFT to repair job departure disruptions and significantly superior to the BestINSERT algorithm in terms of both relative error and computational time for large size problems

    An Agent-based Approach for Manufacturing Production Scheduling with Emission Consideration

    Get PDF
    In the current business climate with increasingly changing customer requirements and strong business competition, manufacturing organisations need to enhance their productivity and adaptability in order to survive in the current business environment and raise their competitiveness. As a result, the optimisation of production scheduling in manufacturing systems has attracted increasing attention by manufacturers. The optimisation of manufacturing scheduling can be simplified as an optimisation problem for minimising processing cost and time with a set of constraints reflecting the technical relationships between jobs or job features and the resource capability and capacity. Conventional optimisation approaches including mathematical approaches, dispatching rules, heuristics and meta-heuristics have been applied in this research area but optimal solutions cannot be achieved in a reasonable computational time. In this PhD research, an agent based approach is developed for solving the manufacturing production optimisation problem. There is an agent iterative bidding mechanism coordinated by a Genetic Algorithm (GA) which facilitates the search for optimal routing and sequencing solutions for processing an entire job with shared manufacturing resources. A shop agent in the system works as a mediator which announces bidding operations, collects bids and decides winner machines according to a weight-based function. Machine agents with specific technical capability calculate the total production cost and lead time for job operations according to the predesigned operational sequence, and decide whether to submit their bids based on local utility. Another agent self-adjusting mechanism is employed for resource agents updating the priorities of unprocessed jobs in their buffers. The objective of each machine agent is to maximise local utility, i.e., to increase individual profit. After genetic generations for updating parameters with agent self-adjusting, the near optimal schedule plans can be found. On the other hand, the use of energy in all organisations has become a key issue worldwide. Carbon emissions from manufacturing processes of a company are under the pressure of government and also affect the public opinion. In the previous works from the literature, however, economic and environmental issues are not considered simultaneously in manufacturing production scheduling. Based on the basic agent based optimisation mechanisms, two extensive models with the consideration of the carbon emission during production are built in this research work, where the emission factor is set to be a constraint and another objective respectively. Numerical tests are utilised in order to examine the effectiveness and efficiency of the proposed approaches. Furthermore, two previous approaches from the literature for solving the same problems are rebuilt and results are compared for testing the comparative performance of the proposed approaches. Test results show that near optimal schedule plans can be achieved in a reasonable computational time

    Aide à la prise de décision en temps réel dans un contexte de production adaptative

    Get PDF
    La dynamique des marchés a évolué et les entreprises manufacturières ont dû s’adapter pour rester compétitives. Une usine se définissait historiquement par les biens qu’elle produisait. La valeur de ces biens était évaluée avant tout par leurs composants. Mais sous la pression du marché et de son dynamisme accru, les usines souhaitant rester compétitives deviennent de plus en plus des centres de service. Cela provoque des changements et des problèmes de gestion pour lesquels elles n’étaient pas préparées. L’efficacité économique de la création de valeur n’est plus aujourd’hui la seule propriété des produits, mais se déplace vers les processus. Cela signifie que les potentiels qui seront décisifs ne sont pas à chercher dans les capacités des produits, mais dans les capacités des processus. En effet, la mondialisation accroit l’anonymat des produits tout au long de chaînes d’approvisionnement plus longues et plus complexes. Toute entreprise souhaitant se démarquer de la compétition doit proposer à ses clients de la valeur ajoutée additionnelle tels qu’une flexibilité accrue, des délais de livraison plus courts, un meilleur respect des délais, un plus grand choix d’options. Ces propriétés sont le fruit des processus. Leur valeur ajoutée se transfère à leur résultat et donc au client. Une des conditions nécessaires à la transparence des processus est leur capacité à coller en temps réel au flux de valeur de l’entreprise. Les processus doivent être en mesure de s’adapter aux conditions changeantes de l’environnement, de réagir à des événements imprévus et de résoudre ces difficultés en collaborant. C’est à ces conditions qu’ils pourront devenir des processus adaptatifs. Cette thèse s’intéresse aux processus de réordonnancement en milieu industriel. Elle vise l’implantation de composantes d’aide à la prise de décision en temps réel ainsi que des mécanismes de boucle rétroactive intégrant l’optimisation et les techniques de simulation au sein d’applications ERP et MES permettant ainsi de connecter l’atelier de production au reste de l’entreprise. La plateforme qui a été mise en place permet de répondre en temps réel aux divers aléas survenant dans l’atelier et peut être étendue au-delà de la problématique de l’ordonnancement.----------ABSTRACT The market dynamics have evolved and manufacturing facilities have followed this trend to stay competitive. The classic factory has been defined by its manufactured goods. The value of these goods has been measured primarily by their material components. But under the market pressure and its increasing dynamism, factories wishing to stay competitive are becoming modern service centers. It has resulted in management problems for which many companies are not yet prepared. Today, the economic efficiency of value creation is not a property of the products but rather of the process. It means the decisive potentials of companies are to be found not so much in their production capability but in their process capability. Indeed, increasing globalization is necessarily leading towards more anonymous products out of long supply chains. Any enterprise wishing to stand out from the competition in the future needs a strategy which offers the customer an additional added value, such as, for example, high flexibility, short delivery times, high delivery reliability, and wide range of variants. These properties are created by the processes. The requirement for process capability gives rise in turn to the requirement that all value-adding processes be geared to the process result and thus to the customer. A necessary condition of process transparency is the ability to map the company's value stream in real time. Processes must be able to adapt to environmental changing conditions, react to unforeseen events and to solve these difficulties by collaborating. Under these conditions they can be called adaptive processes. This thesis focuses on scheduling process in manufacturing environments. The main objective is to implement real time decision-making support components as well as feedback loop mechanisms integrating optimization and simulation techniques in ERP and MES applications allowing connecting the shop floor to the rest of the enterprise. The proposed platform responds in real time to various events occurring on the shop floor and may be extended beyond the scheduling issue. The works developed during this thesis are based on four published, accepted or submitted papers to specialized papers

    A dynamic scheduling model for construction enterprises

    Get PDF
    The vast majority of researches in the scheduling context focused on finding optimal or near-optimal predictive schedules under different scheduling problem characteristics. In the construction industry, predictive schedules are often produced in advance in order to direct construction operations and to support other planning activities. However, construction projects operate in dynamic environments subject to various real-time events, which usually disrupt the predictive optimal schedules, leading to schedules neither feasible nor optimal. Accordingly, the development of a dynamic scheduling model which can accommodate these real-time events would be of great importance for the successful implementation of construction scheduling systems. This research sought to develop a dynamic scheduling based solution which can be practically used for real time analysis and scheduling of construction projects, in addition to resources optimization for construction enterprises. The literature reviews for scheduling, dynamic scheduling, and optimization showed that despite the numerous researches presented and application performed in the dynamic scheduling field within manufacturing and other industries, there was dearth in dynamic scheduling literature in relation to the construction industry. The research followed two main interacting research paths, a path related to the development of the practical solution, and another path related to the core model development. The aim of the first path (or the proposed practical solution path) was to develop a computer-based dynamic scheduling framework which can be used in practical applications within the construction industry. Following the scheduling literature review, the construction project management community s opinions about the problem under study and the user requirements for the proposed solution were collected from 364 construction project management practitioners from 52 countries via a questionnaire survey and were used to form the basis for the functional specifications of a dynamic scheduling framework. The framework was in the form of a software tool fully integrated with current planning/scheduling practices with all core modelling which can support the integration of the dynamic scheduling processes to the current planning/scheduling process with minimal experience requirement from users about optimization. The second research path, or the dynamic scheduling core model development path, started with the development of a mathematical model based on the scheduling models in literature, with several extensions according to the practical considerations related to the construction industry, as investigated in the questionnaire survey. Scheduling problems are complex from operational research perspective; so, for the proposed solution to be functional in optimizing construction schedules, an optimization algorithm was developed to suit the problem's characteristics and to be used as part of the dynamic scheduling model's core. The developed algorithm contained few contributions to the scheduling context (such as schedule justification heuristics, and rectification to schedule generation schemes), as well as suggested modifications to the formulation and process of the adopted optimization technique (particle swarm optimization) leading to considerable improvement to this techniques outputs with respect to schedules quality. After the completion of the model development path, the first research path was concluded by combining the gathered solution's functional specifications and the developed dynamic scheduling model into a software tool, which was developed to verify & validate the proposed model s functionalities and the overall solution s practicality and scalability. The verification process started with an extensive testing of the model s static functionality using several well recognized scheduling problem sets available in literature, and the results showed that the developed algorithm can be ranked as one of the best state-of-the-art algorithms for solving resource-constrained project scheduling problems. To verify the software tool and the dynamic features of the developed model (or the formulation of data transfers from one optimization stage to the next), a case study was implemented on a construction entity in the Arabian Gulf area, having a mega project under construction, with all aspects to resemble an enterprise structure. The case study results showed that the proposed solution reasonably performed under large scale practical application (where all optimization targets were met in reasonable time) for all designed schedule preparation processes (baseline, progress updates, look-ahead schedules, and what-if schedules). Finally, to confirm and validate the effectiveness and practicality of the proposed solution, the solution's framework and the verification results were presented to field experts, and their opinions were collected through validation forms. The feedbacks received were very positive, where field experts/practitioners confirmed that the proposed solution achieved the main functionalities as designed in the solution s framework, and performed efficiently under the complexity of the applied case study
    corecore