3 research outputs found

    Fault-tolerant networks-on-chip routing with coarse and fine-grained look-ahead

    Get PDF
    Fault tolerance and adaptive capabilities are challenges for modern networks-on-chip (NoC) due to the increase in physical defects in advanced manufacturing processes. Two novel adaptive routing algorithms, namely coarse and fine-grained (FG) look-ahead algorithms, are proposed in this paper to enhance 2-D mesh/torus NoC system fault-tolerant capabilities. These strategies use fault flag codes from neighboring nodes to obtain the status or conditions of real-time traffic in an NoC region, then calculate the path weights and choose the route to forward packets. This approach enables the router to minimize congestion for the adjacent connected channels and also to bypass a path with faulty channels by looking ahead at distant neighboring router paths. The novelty of the proposed routing algorithms is the weighted path selection strategies, which make near-optimal routing decisions to maintain the NoC system performance under high fault rates. Results show that the proposed routing algorithms can achieve performance improvement compared to other state of the art works under various traffic loads and high fault rates. The routing algorithm with FG look-ahead capability achieves a higher throughput compared with the coarse-grained approach under complex fault patterns. The hardware area/power overheads of both routing approaches are relatively low which does not prohibit scalability for large-scale NoC implementations

    Dynamic fault-tolerant routing algorithm for networks-on-chip based on localised detouring paths

    No full text
    Downscaled complementary metal-oxide semiconductor (CMOS) technology feature sizes have enabled massive transistor integration densities. Multi-core chips with billions of transistors are now a reality. However, this rapid increase in on-chip resources has come at the expense of higher susceptibility to defects and wear-out. The inter-router communication links of networks-on-chips (NoCs) are composed of metal wires that are especially vulnerable to catastrophic physical effects such as those of electro-migration, which can even cause link disconnects. To address this hazard, fault-tolerant (FT) routing algorithms sustain on-chip communication by re-routing messages around faulty links, or regions. This work presents a new FT routing scheme that employs a localised re-routing approach. Packets are de-toured around faulty links/regions based on purely local and distributed decisions, and without any global link state knowledge. The algorithm, which is proven to be deadlock-and livelock-free, also handles dynamically occurring faults. Detailed evaluation with synthetic traffic patterns and real applications within a full-system simulation environment demonstrate the efficacy of the new scheme with up to 12% of NoC links being faulty. Synthesis results also prove the feasibility of the proposed protocol at modest hardware and power consumption overheads of only over 5 and 2.5%, respectively

    Dynamic fault-tolerant routing algorithm for networks-on-chip based on localised detouring paths

    No full text
    Downscaled complementary metal-oxide semiconductor (CMOS) technology feature sizes have enabled massive transistor integration densities. Multi-core chips with billions of transistors are now a reality. However, this rapid increase in on-chip resources has come at the expense of higher susceptibility to defects and wear-out. The inter-router communication links of networks-on-chips (NoCs) are composed of metal wires that are especially vulnerable to catastrophic physical effects such as those of electro-migration, which can even cause link disconnects. To address this hazard, fault-tolerant (FT) routing algorithms sustain on-chip communication by re-routing messages around faulty links, or regions. This work presents a new FT routing scheme that employs a localised re-routing approach. Packets are de-toured around faulty links/regions based on purely local and distributed decisions, and without any global link state knowledge. The algorithm, which is proven to be deadlock-and livelock-free, also handles dynamically occurring faults. Detailed evaluation with synthetic traffic patterns and real applications within a full-system simulation environment demonstrate the efficacy of the new scheme with up to 12% of NoC links being faulty. Synthesis results also prove the feasibility of the proposed protocol at modest hardware and power consumption overheads of only over 5 and 2.5%, respectively
    corecore