2 research outputs found

    Modeling the effects of insecticides and external efforts on crop production

    Get PDF
    In this paper a nonlinear mathematical model is proposed and analyzed to understand the effects of insects, insecticides and external efforts on the agricultural crop productions. In the modeling process, we have assumed that crops grow logistically and decrease due to insects, which are wholly dependent on crops. Insecticides and external efforts are applied to control the insect population and enhance the crop production, respectively. The external efforts affect the intrinsic growth rate and carrying capacity of crop production. The feasibility of equilibria and their stability properties are discussed. We have identified the key parameters for the formulation of effective control strategies necessary to combat the insect population and increase the crop production using the approach of global sensitivity analysis. Numerical simulation is performed, which supports the analytical findings. It is shown that periodic oscillations arise through Hopf bifurcation as spraying rate of insecticides decreases. Our findings suggest that to gain the desired crop production, the rate of spraying and the quality of insecticides with proper use of external efforts are much important

    Dynamic Analysis of General Integrated Pest Management Model with Double Impulsive Control

    Get PDF
    A general predator-prey model with disease in the prey and double impulsive control is proposed and investigated for the purpose of integrated pest management. By using the Floquet theory, the comparison theorem of impulsive differential equations, and the persistence theory of dynamical systems, we obtain that if threshold value R01, then the model is permanent. The numerical examples not only illustrate the theoretical results, but also show that when the model is permanent, then it may possess a unique globally attractive T-periodic solution
    corecore