6 research outputs found

    A selective approach for energy-aware video content adaptation decision-taking engine in android based smartphone

    Get PDF
    Rapid advancement of technology and their increasing affordability have transformed mobile devices from a means of communication to tools for socialization, entertainment, work and learning. However, advancement of battery technology and capacity is slow compared to energy need. Viewing content with high quality of experience will consume high power. In limited available energy, normal content adaptation system will decrease the content quality, hence reducing quality of experience. However, there is a need for optimizing content quality of experience (QoE) in a limited available energy. With modification and improvement, content adaptation may solve this issue. The key objective of this research is to propose a framework for energy-aware video content adaptation system to enable video delivery over the Internet. To optimise the QoE while viewing streaming video on a limited available smartphone energy, an algorithm for energy-aware video content adaptation decision-taking engine named EnVADE is proposed. The EnVADE algorithm uses selective mechanism. Selective mechanism means the video segmented into scenes and adaptation process is done based on the selected scenes. Thus, QoE can be improved. To evaluate EnVADE algorithm in term of energy efficiency, an experimental evaluation has been done. Subjective evaluation by selected respondents are also has been made using Absolute Category Rating method as recommended by ITU to evaluate EnVADE algorithm in term of QoE. In both evaluation, comparison with other methods has been made. The results show that the proposed solution is able to increase the viewing time of about 14% compared to MPEG-DASH which is an official international standard and widely used streaming method. In term of QoE subjective test, EnVADE algorithm score surpasses the score of other video streaming method. Therefore, EnVADE framework and algorithm has proven its capability as an alternative technique to stream video content with higher QoE and lower energy consumption

    Power, Performance, and Energy Management of Heterogeneous Architectures

    Get PDF
    abstract: Many core modern multiprocessor systems-on-chip offers tremendous power and performance optimization opportunities by tuning thousands of potential voltage, frequency and core configurations. Applications running on these architectures are becoming increasingly complex. As the basic building blocks, which make up the application, change during runtime, different configurations may become optimal with respect to power, performance or other metrics. Identifying the optimal configuration at runtime is a daunting task due to a large number of workloads and configurations. Therefore, there is a strong need to evaluate the metrics of interest as a function of the supported configurations. This thesis focuses on two different types of modern multiprocessor systems-on-chip (SoC): Mobile heterogeneous systems and tile based Intel Xeon Phi architecture. For mobile heterogeneous systems, this thesis presents a novel methodology that can accurately instrument different types of applications with specific performance monitoring calls. These calls provide a rich set of performance statistics at a basic block level while the application runs on the target platform. The target architecture used for this work (Odroid XU3) is capable of running at 4940 different frequency and core combinations. With the help of instrumented application vast amount of characterization data is collected that provides details about performance, power and CPU state at every instrumented basic block across 19 different types of applications. The vast amount of data collected has enabled two runtime schemes. The first work provides a methodology to find optimal configurations in heterogeneous architecture using classifiers and demonstrates an average increase of 93%, 81% and 6% in performance per watt compared to the interactive, ondemand and powersave governors, respectively. The second work using same data shows a novel imitation learning framework for dynamically controlling the type, number, and the frequencies of active cores to achieve an average of 109% PPW improvement compared to the default governors. This work also presents how to accurately profile tile based Intel Xeon Phi architecture while training different types of neural networks using open image dataset on deep learning framework. The data collected allows deep exploratory analysis. It also showcases how different hardware parameters affect performance of Xeon Phi.Dissertation/ThesisMasters Thesis Engineering 201
    corecore