51 research outputs found

    Blockchain based secure data handover scheme in non-orthogonal multiple access

    Full text link
    Non-orthogonal multiple access (NOMA) with successive interference cancellation receiver is considered as one of the most potent multiple access techniques to be adopted in future wireless communication networks. Data security in the NOMA transmission scheme is on much attention drawing issue. Blockchain is a distributed peer-to-peer network enables a way of protecting information from unauthorized access, tempering etc. By utilizing encryption techniques of blockchain, a secured data communication scheme using blockchain in NOMA is proposed in this paper. A two-phase encryption technique with key generation using different parameter is proposed. In the first-phase data is encrypted by imposing users' public key and in the second phase, a private key of the base station (BS) is engaged for encryption. Finally, the superiority of the proposed scheme over existing scheme is proven through a comparative study based on the different features.Comment: Published in 2018 4th International Conference on Wireless and Telematics (ICWT

    User Clustering for STAR-RIS Assisted Full-Duplex NOMA Communication Systems

    Full text link
    In contrast to conventional reconfigurable intelligent surface (RIS), simultaneous transmitting and reflecting reconfigurable intelligent surface (STAR-RIS) has been proposed recently to enlarge the serving area from 180o to 360o coverage. This work considers the performance of a STAR-RIS aided full-duplex (FD) non-orthogonal multiple access (NOMA) communication systems. The STAR-RIS is implemented at the cell-edge to assist the cell-edge users, while the cell-center users can communicate directly with a FD base station (BS). We first introduce new user clustering schemes for the downlink and uplink transmissions. Then, based on the proposed transmission schemes closed-form expressions of the ergodic rates in the downlink and uplink modes are derived taking into account the system impairments caused by the self interference at the FD-BS and the imperfect successive interference cancellation (SIC). Moreover, an optimization problem to maximize the total sum-rate is formulated and solved by optimizing the amplitudes and the phase-shifts of the STAR-RIS elements and allocating the transmit power efficiently. The performance of the proposed user clustering schemes and the optimal STAR-RIS design are investigated through numerical resultsComment: arXiv admin note: text overlap with arXiv:2309.1503

    Fairness Comparison of Uplink NOMA and OMA

    Full text link
    In this paper, we compare the resource allocation fairness of uplink communications between non-orthogonal multiple access (NOMA) schemes and orthogonal multiple access (OMA) schemes. Through characterizing the contribution of the individual user data rate to the system sum rate, we analyze the fundamental reasons that NOMA offers a more fair resource allocation than that of OMA in asymmetric channels. Furthermore, a fairness indicator metric based on Jain's index is proposed to measure the asymmetry of multiuser channels. More importantly, the proposed metric provides a selection criterion for choosing between NOMA and OMA for fair resource allocation. Based on this discussion, we propose a hybrid NOMA-OMA scheme to further enhance the users fairness. Simulation results confirm the accuracy of the proposed metric and demonstrate the fairness enhancement of the proposed hybrid NOMA-OMA scheme compared to the conventional OMA and NOMA schemes.Comment: 6 pages, accepted for publication, VTC 2017, Spring, Sydne

    User Pairing and Power Allocation for IRS-Assisted NOMA Systems with Imperfect Phase Compensation

    Get PDF
    In this letter, we analyze the performance of the intelligent reflecting surface (IRS) assisted downlink non-orthogonal multiple access (NOMA) systems in the presence of imperfect phase compensation. We derive an upper bound on the imperfect phase compensation to achieve minimum required data rates for each user. Using this bound, we propose an adaptive user pairing algorithm to maximize the network throughput. We then derive bounds on the power allocation factors and propose power allocation algorithms for the paired users to achieve the maximum sum rate or ensure fairness. Through extensive simulations, we show that the proposed algorithms significantly outperform the state-of-the-art algorithms

    Outage-constrained robust power allocation for downlink MC-NOMA with imperfect SIC

    Get PDF
    In this paper, we study power allocation for downlink multi-carrier non-orthogonal multiple access (MC-NOMA) systems and examine the effects of residual cancellation errors resulting from imperfect successive interference cancellation (SIC) on the system performance. In the presence of random SIC errors, we study outage probability of minimum reserved rate for individual user and formulate outage-constrained robust optimization to minimize the total transmit power. Since the problem is non-convex due to probabilistic constraints, complementary geometric programming (CGP) and arithmetic geometric mean approximation (AGMA) technique are employed to transform it into a convex form. An efficient iterative algorithm with low computational complexity is developed to solve the optimization problem. Simulation results demonstrate the performance of robust MC-NOMA with imperfect SIC and compare that to non-robust MC-NOMA and orthogonal multiple access (OMA) schemes
    corecore