3,534 research outputs found

    Continuous Action Recognition Based on Sequence Alignment

    Get PDF
    Continuous action recognition is more challenging than isolated recognition because classification and segmentation must be simultaneously carried out. We build on the well known dynamic time warping (DTW) framework and devise a novel visual alignment technique, namely dynamic frame warping (DFW), which performs isolated recognition based on per-frame representation of videos, and on aligning a test sequence with a model sequence. Moreover, we propose two extensions which enable to perform recognition concomitant with segmentation, namely one-pass DFW and two-pass DFW. These two methods have their roots in the domain of continuous recognition of speech and, to the best of our knowledge, their extension to continuous visual action recognition has been overlooked. We test and illustrate the proposed techniques with a recently released dataset (RAVEL) and with two public-domain datasets widely used in action recognition (Hollywood-1 and Hollywood-2). We also compare the performances of the proposed isolated and continuous recognition algorithms with several recently published methods

    Online and Offline Character Recognition Using Alignment to Prototypes

    Full text link
    Nearest neighbor classifiers are simple to implement, yet they can model complex non-parametric distributions, and provide state-of-the-art recognition accuracy in OCR databases. At the same time, they may be too slow for practical character recognition, especially when they rely on similarity measures that require computationally expensive pairwise alignments between characters. This paper proposes an efficient method for computing an approximate similarity score between two characters based on their exact alignment to a small number of prototypes. The proposed method is applied to both online and offline character recognition, where similarity is based on widely used and computationally expensive alignment methods, i.e., Dynamic Time Warping and the Hungarian method respectively. In both cases significant recognition speedup is obtained at the expense of only a minor increase in recognition error.Office of Naval Research (N00014-03-1-0108); National Science Foundation (IIS-0308213, EIA-0202067

    Generating Labels for Regression of Subjective Constructs using Triplet Embeddings

    Full text link
    Human annotations serve an important role in computational models where the target constructs under study are hidden, such as dimensions of affect. This is especially relevant in machine learning, where subjective labels derived from related observable signals (e.g., audio, video, text) are needed to support model training and testing. Current research trends focus on correcting artifacts and biases introduced by annotators during the annotation process while fusing them into a single annotation. In this work, we propose a novel annotation approach using triplet embeddings. By lifting the absolute annotation process to relative annotations where the annotator compares individual target constructs in triplets, we leverage the accuracy of comparisons over absolute ratings by human annotators. We then build a 1-dimensional embedding in Euclidean space that is indexed in time and serves as a label for regression. In this setting, the annotation fusion occurs naturally as a union of sets of sampled triplet comparisons among different annotators. We show that by using our proposed sampling method to find an embedding, we are able to accurately represent synthetic hidden constructs in time under noisy sampling conditions. We further validate this approach using human annotations collected from Mechanical Turk and show that we can recover the underlying structure of the hidden construct up to bias and scaling factors.Comment: 9 pages, 5 figures, accepted journal pape

    Dynamic Time Warping as a Similarity Measure: Applications in Finance

    Get PDF
    This paper presents the basic DTW-algorithm and the manner it can be used as a similarity measure for two different series that might differ in length. Through a simulation process it is being showed the relation of DTW-based similarity measure, dubbed ?_DTW, with two other celebrated measures, that of the Pearson’s and Spearman’s correlation coefficients. In particular, it is shown that ?_DTW takes lower (greater) values when other two measures are great (low) in absolute terms. In addition a dataset composed by 8 financial indices was used, and two applications of the aforementioned measure are presented. First, through a rolling basis, the evolution of ?_DTW has been examined along with the Pearson’s correlation and the volatility. Results showed that in periods of high (low) volatility similarities within the examined series increase (decrease). Second, a comparison of the mean similarities across different classes of months is being carried. Results vary, however a statistical significant greater similarity within Aprils is being reported compared to other months, especially for the CAC 40, IBEX 35 and FTSE MIB indices
    • …
    corecore