76,960 research outputs found

    Metrics for Graph Comparison: A Practitioner's Guide

    Full text link
    Comparison of graph structure is a ubiquitous task in data analysis and machine learning, with diverse applications in fields such as neuroscience, cyber security, social network analysis, and bioinformatics, among others. Discovery and comparison of structures such as modular communities, rich clubs, hubs, and trees in data in these fields yields insight into the generative mechanisms and functional properties of the graph. Often, two graphs are compared via a pairwise distance measure, with a small distance indicating structural similarity and vice versa. Common choices include spectral distances (also known as λ\lambda distances) and distances based on node affinities. However, there has of yet been no comparative study of the efficacy of these distance measures in discerning between common graph topologies and different structural scales. In this work, we compare commonly used graph metrics and distance measures, and demonstrate their ability to discern between common topological features found in both random graph models and empirical datasets. We put forward a multi-scale picture of graph structure, in which the effect of global and local structure upon the distance measures is considered. We make recommendations on the applicability of different distance measures to empirical graph data problem based on this multi-scale view. Finally, we introduce the Python library NetComp which implements the graph distances used in this work

    Robust Temporally Coherent Laplacian Protrusion Segmentation of 3D Articulated Bodies

    Get PDF
    In motion analysis and understanding it is important to be able to fit a suitable model or structure to the temporal series of observed data, in order to describe motion patterns in a compact way, and to discriminate between them. In an unsupervised context, i.e., no prior model of the moving object(s) is available, such a structure has to be learned from the data in a bottom-up fashion. In recent times, volumetric approaches in which the motion is captured from a number of cameras and a voxel-set representation of the body is built from the camera views, have gained ground due to attractive features such as inherent view-invariance and robustness to occlusions. Automatic, unsupervised segmentation of moving bodies along entire sequences, in a temporally-coherent and robust way, has the potential to provide a means of constructing a bottom-up model of the moving body, and track motion cues that may be later exploited for motion classification. Spectral methods such as locally linear embedding (LLE) can be useful in this context, as they preserve "protrusions", i.e., high-curvature regions of the 3D volume, of articulated shapes, while improving their separation in a lower dimensional space, making them in this way easier to cluster. In this paper we therefore propose a spectral approach to unsupervised and temporally-coherent body-protrusion segmentation along time sequences. Volumetric shapes are clustered in an embedding space, clusters are propagated in time to ensure coherence, and merged or split to accommodate changes in the body's topology. Experiments on both synthetic and real sequences of dense voxel-set data are shown. This supports the ability of the proposed method to cluster body-parts consistently over time in a totally unsupervised fashion, its robustness to sampling density and shape quality, and its potential for bottom-up model constructionComment: 31 pages, 26 figure

    Ultrafast Consensus in Small-World Networks

    Get PDF
    In this paper, we demonstrate a phase transition phenomenon in algebraic connectivity of small-world networks. Algebraic connectivity of a graph is the second smallest eigenvalue of its Laplacian matrix and a measure of speed of solving consensus problems in networks. We demonstrate that it is possible to dramatically increase the algebraic connectivity of a regular complex network by 1000 times or more without adding new links or nodes to the network. This implies that a consensus problem can be solved incredibly fast on certain small-world networks giving rise to a network design algorithm for ultra fast information networks. Our study relies on a procedure called "random rewiring" due to Watts & Strogatz (Nature, 1998). Extensive numerical results are provided to support our claims and conjectures. We prove that the mean of the bulk Laplacian spectrum of a complex network remains invariant under random rewiring. The same property only asymptotically holds for scale-free networks. A relationship between increasing the algebraic connectivity of complex networks and robustness to link and node failures is also shown. This is an alternative approach to the use of percolation theory for analysis of network robustness. We also show some connections between our conjectures and certain open problems in the theory of random matrices

    Dynamic structure factor of Luttinger liquids with quadratic energy dispersion and long-range interactions

    Full text link
    We calculate the dynamic structure factor S (omega, q) of spinless fermions in one dimension with quadratic energy dispersion k^2/2m and long range density-density interaction whose Fourier transform f_q is dominated by small momentum-transfers q << q_0 << k_F. Here q_0 is a momentum-transfer cutoff and k_F is the Fermi momentum. Using functional bosonization and the known properties of symmetrized closed fermion loops, we obtain an expansion of the inverse irreducible polarization to second order in the small parameter q_0 / k_F. In contrast to perturbation theory based on conventional bosonization, our functional bosonization approach is not plagued by mass-shell singularities. For interactions which can be expanded as f_q = f_0 + f_0^{2} q^2/2 + O (q^4) with finite f_0^{2} we show that the momentum scale q_c = 1/ | m f_0^{2} | separates two regimes characterized by a different q-dependence of the width gamma_q of the collective zero sound mode and other features of S (omega, q). For q_c << q << k_F we find that the line-shape in this regime is non-Lorentzian with an overall width gamma_q of order q^3/(m q_c) and a threshold singularity at the lower edge.Comment: 33 Revtex pages, 17 figure

    Geometric deep learning: going beyond Euclidean data

    Get PDF
    Many scientific fields study data with an underlying structure that is a non-Euclidean space. Some examples include social networks in computational social sciences, sensor networks in communications, functional networks in brain imaging, regulatory networks in genetics, and meshed surfaces in computer graphics. In many applications, such geometric data are large and complex (in the case of social networks, on the scale of billions), and are natural targets for machine learning techniques. In particular, we would like to use deep neural networks, which have recently proven to be powerful tools for a broad range of problems from computer vision, natural language processing, and audio analysis. However, these tools have been most successful on data with an underlying Euclidean or grid-like structure, and in cases where the invariances of these structures are built into networks used to model them. Geometric deep learning is an umbrella term for emerging techniques attempting to generalize (structured) deep neural models to non-Euclidean domains such as graphs and manifolds. The purpose of this paper is to overview different examples of geometric deep learning problems and present available solutions, key difficulties, applications, and future research directions in this nascent field

    SplineCNN: Fast Geometric Deep Learning with Continuous B-Spline Kernels

    Full text link
    We present Spline-based Convolutional Neural Networks (SplineCNNs), a variant of deep neural networks for irregular structured and geometric input, e.g., graphs or meshes. Our main contribution is a novel convolution operator based on B-splines, that makes the computation time independent from the kernel size due to the local support property of the B-spline basis functions. As a result, we obtain a generalization of the traditional CNN convolution operator by using continuous kernel functions parametrized by a fixed number of trainable weights. In contrast to related approaches that filter in the spectral domain, the proposed method aggregates features purely in the spatial domain. In addition, SplineCNN allows entire end-to-end training of deep architectures, using only the geometric structure as input, instead of handcrafted feature descriptors. For validation, we apply our method on tasks from the fields of image graph classification, shape correspondence and graph node classification, and show that it outperforms or pars state-of-the-art approaches while being significantly faster and having favorable properties like domain-independence.Comment: Presented at CVPR 201
    • …
    corecore