2 research outputs found

    Representation, editing and real-time visualization of complex 3D terrains

    Get PDF
    Ankara : The Department of Computer Engineering and the Graduate School of Engineering and Science of Bilkent University, 2012.Thesis (Master's) -- Bilkent University, 2012.Includes bibliographical references leaves 154-158.Terrain rendering is a crucial part of many real-time computer graphics applications such as video games and visual simulations. It provides the main frame-ofreference for the observer and constitutes the basis of an imaginary or simulated world that encases the observer. Storing and rendering terrain models in real-time applications usually require a specialized approach due to the sheer magnitude of data available and the level of detail demanded. The easiest way to process and visualize such large amounts of data in real-time is to constrain the terrain model in several ways. This process of regularization decreases the amount of data to be processed and also the amount of processing power needed at the cost of expressivity and the ability to create interesting terrains. The most popular terrain representation, by far, used by modern real-time graphics applications is a regular 2D grid where the vertices are displaced in a third dimension by a displacement map, conventionally called a height map. It is the simplest and fastest possible terrain representation, but it is not possible to represent complex terrain models that include interesting terrain features such as caves, overhangs, cliffs and arches using a simple 2D grid and a height map. We propose a novel terrain representation combining the voxel and height map approaches that is expressive enough to allow creating complex terrains with caves, overhangs, cliffs and arches, and efficient enough to allow terrain editing, deformations and rendering in real-time. We also explore how to apply lighting, texturing, shadowing and level-of-detail to the proposed terrain representation.Koca, ÇetinM.S

    CISBAT 2009: International Scientific Conference - Renewables in a changing climate - From Nano to Urban Scale

    Get PDF
    Centred on research and development in solar energy applications to the built environment, the international conference CISBAT 2009 highlighted a large number of interesting technological innovations. The discoveries and developments presented by scientists from five continents are all part of the effort to mitigate greenhouse gas emissions generated by buildings. Renewables are expected to play a very important role against the global threat of a changing climate, even more so as 2009 will hopefully see a new “Post-Kyoto” era in their favour to be initiated at the COP15 United National Climate Change Conference to be held in Copenhagen (Denmark).“Anti-crisis” programmes, which have been launched by several countries in favour of job creation within the framework of a “Green New Deal” will also contribute to sustain the solar momentum.The organisers of the CISBAT Conference, financially supported by the Swiss Federal Office of Energy (SFOE), therefore had no problem convincing their academic partners - Cambridge University (CU) and the Massachusetts Institute of Technology (MIT) - to collaborate in the organisation of this event on the EPFL campus. More than 200 participants from 30 different countries were present during the two conference days and we are confident that they will be even more numerous at the next edition, as feedback from attendees encourages the organisers to increase the size and the duration of the CISBAT conference
    corecore