3 research outputs found

    Channel Assembling with Priority-based Queues in Cognitive Radio Networks: Strategies and Performance Evaluation

    Full text link
    [EN] With the implementation of channel assembling (CA) techniques, higher data rate can be achieved for secondary users in multi-channel cognitive radio networks. Recent studies which are based on loss systems show that maximal capacity can be achieved using dynamic CA strategies. However the channel allocation schemes suffer from high blocking and forced termination when primary users become active. In this paper, we propose to introduce queues for secondary users so that those flows that would otherwise be blocked or forcibly terminated could be buffered and possibly served later. More specifically, in a multi-channel network with heterogeneous traffic, two queues are separately allocated to real-time and elastic users and channel access opportunities are distributed between these two queues in a way that real-time services receive higher priority. Two queuing schemes are introduced based on the delay tolerance of interrupted elastic services. Furthermore, continuous time Markov chain models are developed to evaluate the performance of the proposed CA strategy with queues, and the correctness as well as the preciseness of the derived theoretical models are verified through extensive simulations. Numerical results demonstrate that the integration of queues can further increase the capacity of the secondary network and spectrum utilization while decreasing blocking probability and forced termination probability. © 2002-2012 IEEE.The authors would like to acknowledge the support from the EU FP7-PEOPLE-IRSES program, project acronym S2EuNet (Grant no. 247083). The work of V. Pla was partly supported by the Ministerio de Ciencia e Innovacion of Spain under Grant TIN2010-21378-C02-02.Balapuwaduge, IAM.; Jiao, L.; Pla, V.; Li, FY. (2014). Channel Assembling with Priority-based Queues in Cognitive Radio Networks: Strategies and Performance Evaluation. IEEE Transactions on Wireless Communications. 13(2):630-645. https://doi.org/10.1109/TWC.2013.120713.121948S63064513

    Network performance & Quality of service in data networks involving spectrum utilization techniques

    Get PDF
    This research has developed technique to improve the quality of service in wireless data networks that employ spectrum utilization techniques based on Cognitive Radio. Most multiple dimension implementations focus on maximizing the Successful Communication Probability SCP in order to improve the wireless network utilization. However this usually has a negative impact on the Quality of Service, since increasing the SCP leads to increasing signal interference and Packet Loss, and thus network performance deterioration. The Multiple Dimension Cognitive Radio technique is a new technique, proposed in this thesis, that improves the Cognitive Radio Networks (CRN) efficiency by giving opportunity to secondary users (Unlicensed users) to use several dimension such as time, frequency, modulation, coding, and antenna directionality to increase their opportunity in finding spectrum hole. In order to draw a balance between improving the networking utilization and keeping the network performance at an acceptable level, this thesis proposes a new model of multiple dimension CR which provides a compromise between maximizing the SCP and network throughput from one side and keeping the QoS within the accepted thresholds from the other side. This is important so as to avoid network performance degradation which may result from the high user density in single wireless domain as a result of maximizing the SCP. In this research, a full Cognitive Radio model has been implemented in the OPNET simulator by developing modified nodes with the appropriate coding which include basic functionality. The Purpose of this model is to simulate the CR environment and study the network performance after applying the controlled multi dimension technique presented here. The proposed technique observes the channel throughput on TCP (Transmission Control Protocol) level, also QoS KPIs (Key Performance Index) like Packet Loss and Bit Error rate, during the operation of the CR multi dimension technique and alerts the system when the throughput degrades below a certain level. The proposed technique has interactive cautious nature which keeps monitoring the network performance and once find evident on network performance deterioration it takes corrective action, terminates low priority connections and releases over utilized channels, in order to keep the performance accepted

    Dynamic sensing strategies for efficient spectrum utilization in cognitive radio networks

    No full text
    For cognitive radio (CR) networks with user hierarchy, the sensing strategy with listen-before-talk (LBT) policy plays a key role in spectrum utilization and primary user (PU) protection. However, existing sensing strategies do not handle satisfactorily the randomness of both user locations and channel conditions in the network environment, resulting in inefficient spectrum utilization. To cope with such randomness, this paper develops three dynamic sensing strategies that can adaptively schedule the sensing slots/cycles according to the online link conditions without assuming knowledge of the PU traffic model. The proposed strategies can improve the efficiency of spectrum utilization while being robust with respect to the uncertainty in the PU traffic pattern. To maximize spectrum utilization, the proposed strategies are formulated through closed-form expressions. Efficient methods are introduced to compute the optimal values of the parameters used in the strategies, such as sensing time and sensing threshold. Simulations verify that the proposed sensing strategies offer an evident improvement on the spectrum utilization of the CR network. © 2006 IEEE
    corecore