177,066 research outputs found

    Self-Healing Distributed Scheduling Platform

    Get PDF
    International audienceDistributed systems require effective mechanisms to manage the reliable provisioning of computational resources from different and distributed providers. Moreover, the dynamic environment that affects the behaviour of such systems and the complexity of these dynamics demand autonomous capabilities to ensure the behaviour of distributed scheduling platforms and to achieve business and user objectives. In this paper we propose a self-adaptive distributed scheduling platform composed of multiple agents implemented as intelligent feedback control loops to support policy-based scheduling and expose self-healing capabilities. Our platform leverages distributed scheduling processes by (i) allowing each provider to maintain its own internal scheduling process, and (ii) implementing self-healing capabilities based on agent module recovery. Simulated tests are performed to determine the optimal number of agents to be used in the negotiation phase without affecting the scheduling cost function. Test results on a real-life platform are presented to evaluate recovery times and optimize platform parameters

    Learning Multi-Modal Self-Awareness Models Empowered by Active Inference for Autonomous Vehicles

    Get PDF
    For autonomous agents to coexist with the real world, it is essential to anticipate the dynamics and interactions in their surroundings. Autonomous agents can use models of the human brain to learn about responding to the actions of other participants in the environment and proactively coordinates with the dynamics. Modeling brain learning procedures is challenging for multiple reasons, such as stochasticity, multi-modality, and unobservant intents. A neglected problem has long been understanding and processing environmental perception data from the multisensorial information referring to the cognitive psychology level of the human brain process. The key to solving this problem is to construct a computing model with selective attention and self-learning ability for autonomous driving, which is supposed to possess the mechanism of memorizing, inferring, and experiential updating, enabling it to cope with the changes in an external world. Therefore, a practical self-driving approach should be open to more than just the traditional computing structure of perception, planning, decision-making, and control. It is necessary to explore a probabilistic framework that goes along with human brain attention, reasoning, learning, and decisionmaking mechanism concerning interactive behavior and build an intelligent system inspired by biological intelligence. This thesis presents a multi-modal self-awareness module for autonomous driving systems. The techniques proposed in this research are evaluated on their ability to model proper driving behavior in dynamic environments, which is vital in autonomous driving for both action planning and safe navigation. First, this thesis adapts generative incremental learning to the problem of imitation learning. It extends the imitation learning framework to work in the multi-agent setting where observations gathered from multiple agents are used to inform the training process of a learning agent, which tracks a dynamic target. Since driving has associated rules, the second part of this thesis introduces a method to provide optimal knowledge to the imitation learning agent through an active inference approach. Active inference is the selective information method gathering during prediction to increase a predictive machine learning model’s prediction performance. Finally, to address the inference complexity and solve the exploration-exploitation dilemma in unobserved environments, an exploring action-oriented model is introduced by pulling together imitation learning and active inference methods inspired by the brain learning procedure

    Learning Multi-Modal Self-Awareness Models Empowered by Active Inference for Autonomous Vehicles

    Get PDF
    Mención Internacional en el título de doctorFor autonomous agents to coexist with the real world, it is essential to anticipate the dynamics and interactions in their surroundings. Autonomous agents can use models of the human brain to learn about responding to the actions of other participants in the environment and proactively coordinates with the dynamics. Modeling brain learning procedures is challenging for multiple reasons, such as stochasticity, multi-modality, and unobservant intents. A neglected problem has long been understanding and processing environmental perception data from the multisensorial information referring to the cognitive psychology level of the human brain process. The key to solving this problem is to construct a computing model with selective attention and self-learning ability for autonomous driving, which is supposed to possess the mechanism of memorizing, inferring, and experiential updating, enabling it to cope with the changes in an external world. Therefore, a practical selfdriving approach should be open to more than just the traditional computing structure of perception, planning, decision-making, and control. It is necessary to explore a probabilistic framework that goes along with human brain attention, reasoning, learning, and decisionmaking mechanism concerning interactive behavior and build an intelligent system inspired by biological intelligence. This thesis presents a multi-modal self-awareness module for autonomous driving systems. The techniques proposed in this research are evaluated on their ability to model proper driving behavior in dynamic environments, which is vital in autonomous driving for both action planning and safe navigation. First, this thesis adapts generative incremental learning to the problem of imitation learning. It extends the imitation learning framework to work in the multi-agent setting where observations gathered from multiple agents are used to inform the training process of a learning agent, which tracks a dynamic target. Since driving has associated rules, the second part of this thesis introduces a method to provide optimal knowledge to the imitation learning agent through an active inference approach. Active inference is the selective information method gathering during prediction to increase a predictive machine learning model’s prediction performance. Finally, to address the inference complexity and solve the exploration-exploitation dilemma in unobserved environments, an exploring action-oriented model is introduced by pulling together imitation learning and active inference methods inspired by the brain learning procedure.Programa de Doctorado en Ingeniería Eléctrica, Electrónica y Automática por la Universidad Carlos III de MadridPresidente: Marco Carli.- Secretario: Víctor González Castro.- Vocal: Nicola Conc

    Organization of Multi-Agent Systems: An Overview

    Full text link
    In complex, open, and heterogeneous environments, agents must be able to reorganize towards the most appropriate organizations to adapt unpredictable environment changes within Multi-Agent Systems (MAS). Types of reorganization can be seen from two different levels. The individual agents level (micro-level) in which an agent changes its behaviors and interactions with other agents to adapt its local environment. And the organizational level (macro-level) in which the whole system changes it structure by adding or removing agents. This chapter is dedicated to overview different aspects of what is called MAS Organization including its motivations, paradigms, models, and techniques adopted for statically or dynamically organizing agents in MAS.Comment: 12 page

    Swarm robot social potential fields with internal agent dynamics

    Get PDF
    Swarm robotics is a new and promising approach to the design and control of multiagent robotic systems. In this paper we use a model for a second order non-linear system of self-propelled agents interacting via pair-wise attractive and repulsive potentials. We propose a new potential field method using dynamic agent internal states to successfully solve a reactive path-planning problem. The path planning problem cannot be solved using static potential fields due to local minima formation, but can be solved by allowing the agent internal states to manipulate the potential field. Simulation results demonstrate the ability of a single agent to perform reactive problem solving effectively, as well as the ability of a swarm of agents to perform problem solving using the collective behaviour of the entire swarm

    Bottom-up self-organization of unpredictable demand and supply under decentralized power management

    Get PDF
    In the DEZENT1 project we had established a distributed base model for negotiating electric power from widely distributed (renewable) power sources on multiple levels in succession. Negotiation strategies would be intelligently adjusted by the agents, through (distributed) Reinforcement Learning procedures. The distribution of the negotiated power quantities (under distributed control as well) occurs such that the grid stability is guaranteed, under 0.5 sec. The major objective in this paper was to deal, on the same level of granularity, with short-term power balance fluctuation, in terms of a peak demand and supply management exhibiting highly dynamic, self-organizing, autonomous yet coordinated algorithms under fine-grained distributed control. Our extensive experiments show very clearly that these short-term fluctuations could be leveled down by 70 - 75 %. In this way we have tackled, for the quickly increasing renewable power systems, a crucial problem of its stability, in a novel way that scales very easily due to the completely decentralized control

    Swarm potential fields with internal agent states and collective behaviour

    Get PDF
    Swarm robotics is a new and promising approach to the design and control of multi-agent robotic systems. In this paper we use a model for a system of self-propelled agents interacting via pairwise attractive and repulsive potentials. We develop a new potential field method using dynamic agent internal states, allowing the swarm agents' internal states to manipulate the potential field. This new method successfully solves a reactive path planning problem that cannot be solved using static potential fields due to local minima formation. Simulation results demonstrate the ability of a swarm of agents that use the model to perform reactive problem solving effectively using the collective behaviour of the entire swarm in a way that matches studies based on real animal group behaviour
    • …
    corecore