578 research outputs found

    Diver Interest via Pointing in Three Dimensions: 3D Pointing Reconstruction for Diver-AUV Communication

    Full text link
    This paper presents Diver Interest via Pointing in Three Dimensions (DIP-3D), a method to relay an object of interest from a diver to an autonomous underwater vehicle (AUV) by pointing that includes three-dimensional distance information to discriminate between multiple objects in the AUV's camera image. Traditional dense stereo vision for distance estimation underwater is challenging because of the relative lack of saliency of scene features and degraded lighting conditions. Yet, including distance information is necessary for robotic perception of diver pointing when multiple objects appear within the robot's image plane. We subvert the challenges of underwater distance estimation by using sparse reconstruction of keypoints to perform pose estimation on both the left and right images from the robot's stereo camera. Triangulated pose keypoints, along with a classical object detection method, enable DIP-3D to infer the location of an object of interest when multiple objects are in the AUV's field of view. By allowing the scuba diver to point at an arbitrary object of interest and enabling the AUV to autonomously decide which object the diver is pointing to, this method will permit more natural interaction between AUVs and human scuba divers in underwater-human robot collaborative tasks.Comment: Under Review International Conference of Robotics and Automation 202

    An Autonomous Surface Vehicle for Long Term Operations

    Full text link
    Environmental monitoring of marine environments presents several challenges: the harshness of the environment, the often remote location, and most importantly, the vast area it covers. Manual operations are time consuming, often dangerous, and labor intensive. Operations from oceanographic vessels are costly and limited to open seas and generally deeper bodies of water. In addition, with lake, river, and ocean shoreline being a finite resource, waterfront property presents an ever increasing valued commodity, requiring exploration and continued monitoring of remote waterways. In order to efficiently explore and monitor currently known marine environments as well as reach and explore remote areas of interest, we present a design of an autonomous surface vehicle (ASV) with the power to cover large areas, the payload capacity to carry sufficient power and sensor equipment, and enough fuel to remain on task for extended periods. An analysis of the design and a discussion on lessons learned during deployments is presented in this paper.Comment: In proceedings of MTS/IEEE OCEANS, 2018, Charlesto

    Evaluation methods for the autonomy of unmanned systems

    Get PDF

    Service-oriented agent architecture for autonomous maritime vehicles

    Get PDF
    Advanced ocean systems are increasing their capabilities and the degree of autonomy more and more in order to perform more sophisticated maritime missions. Remotely operated vehicles are no longer cost-effective since they are limited by economic support costs, and the presence and skills of the human operator. Alternatively, autonomous surface and underwater vehicles have the potential to operate with greatly reduced overhead costs and level of operator intervention. This Thesis proposes an Intelligent Control Architecture (ICA) to enable multiple collaborating marine vehicles to autonomously carry out underwater intervention missions. The ICA is generic in nature but aimed at a case study where a marine surface craft and an underwater vehicle are required to work cooperatively. They are capable of cooperating autonomously towards the execution of complex activities since they have different but complementary capabilities. The architectural foundation to achieve the ICA lays on the flexibility of service-oriented computing and agent technology. An ontological database captures the operator skills, platform capabilities and, changes in the environment. The information captured, stored as knowledge, enables reasoning agents to plan missions based on the current situation. The ICA implementation is verified in simulation, and validated in trials by means of a team of autonomous marine robots. This Thesis also presents architectural details and evaluation scenarios of the ICA, results of simulations and trials from different maritime operations, and future research directions

    Underwater Robot Task Planning Using Multi-Objective Meta-Heuristics

    Get PDF
    Robotics deployed in the underwater medium are subject to stringent operational conditions that impose a high degree of criticality on the allocation of resources and the schedule of operations in mission planning. In this context the so-called cost of a mission must be considered as an additional criterion when designing optimal task schedules within the mission at hand. Such a cost can be conceived as the impact of the mission on the robotic resources themselves, which range from the consumption of battery to other negative effects such as mechanic erosion. This manuscript focuses on this issue by devising three heuristic solvers aimed at efficiently scheduling tasks in robotic swarms, which collaborate together to accomplish a mission, and by presenting experimental results obtained over realistic scenarios in the underwater environment. The heuristic techniques resort to a Random-Keys encoding strategy to represent the allocation of robots to tasks and the relative execution order of such tasks within the schedule of certain robots. The obtained results reveal interesting differences in terms of Pareto optimality and spread between the algorithms considered in the benchmark, which are insightful for the selection of a proper task scheduler in real underwater campaigns

    Robotic Detection of a Human-Comprehensible Gestural Language for Underwater Multi-Human-Robot Collaboration

    Full text link
    In this paper, we present a motion-based robotic communication framework that enables non-verbal communication among autonomous underwater vehicles (AUVs) and human divers. We design a gestural language for AUV-to-AUV communication which can be easily understood by divers observing the conversation unlike typical radio frequency, light, or audio based AUV communication. To allow AUVs to visually understand a gesture from another AUV, we propose a deep network (RRCommNet) which exploits a self-attention mechanism to learn to recognize each message by extracting maximally discriminative spatio-temporal features. We train this network on diverse simulated and real-world data. Our experimental evaluations, both in simulation and in closed-water robot trials, demonstrate that the proposed RRCommNet architecture is able to decipher gesture-based messages with an average accuracy of 88-94% on simulated data, 73-83% on real data (depending on the version of the model used). Further, by performing a message transcription study with human participants, we also show that the proposed language can be understood by humans, with an overall transcription accuracy of 88%. Finally, we discuss the inference runtime of RRCommNet on embedded GPU hardware, for real-time use on board AUVs in the field
    corecore