12 research outputs found

    A Monitoring Language for Run Time and Post-Mortem Behavior Analysis and Visualization

    Get PDF
    UFO is a new implementation of FORMAN, a declarative monitoring language, in which rules are compiled into execution monitors that run on a virtual machine supported by the Alamo monitor architecture.Comment: In M. Ronsse, K. De Bosschere (eds), proceedings of the Fifth International Workshop on Automated Debugging (AADEBUG 2003), September 2003, Ghent. cs.SE/030902

    Tracing Execution of Software for Design Coverage

    Full text link
    Test suites are designed to validate the operation of a system against requirements. One important aspect of a test suite design is to ensure that system operation logic is tested completely. A test suite should drive a system through all abstract states to exercise all possible cases of its operation. This is a difficult task. Code coverage tools support test suite designers by providing the information about which parts of source code are covered during system execution. Unfortunately, code coverage tools produce only source code coverage information. For a test engineer it is often hard to understand what the noncovered parts of the source code do and how they relate to requirements. We propose a generic approach that provides design coverage of the executed software simplifying the development of new test suites. We demonstrate our approach on common design abstractions such as statecharts, activity diagrams, message sequence charts and structure diagrams. We implement the design coverage using Third Eye tracing and trace analysis framework. Using design coverage, test suites could be created faster by focussing on untested design elements.Comment: Short version of this paper to be published in Proceedings of 16th IEEE International Conference on Automated Software Engineering (ASE 2001). 13 pages, 9 figure

    Synthesizing Iterators from Abstraction Functions

    Get PDF
    A technique for synthesizing iterators from declarative abstraction functions written in a relational logic specification language is described. The logic includes a transitive closure operator that makes it convenient for expressing reachability queries on linked data structures. Some optimizations, including tuple elimination, iterator flattening, and traversal state reduction, are used to improve performance of the generated iterators. A case study demonstrates that most of the iterators in the widely used JDK Collections classes can be replaced with code synthesized from declarative abstraction functions. These synthesized iterators perform competitively with the hand-written originals. In a user study the synthesized iterators always passed more test cases than the hand-written ones, were almost always as efficient, usually took less programmer effort, and were the qualitative preference of all participants who provided free-form comments

    Sindarin: A Versatile Scripting API for the Pharo Debugger

    Get PDF
    International audienceDebugging is one of the most important and time consuming activities in software maintenance, yet mainstream debuggers are not well-adapted to several debugging scenarios. This has led to the research of new techniques covering specific families of complex bugs. Notably, recent research proposes to empower developers with scripting DSLs, plugin-based and moldable debuggers. However, these solutions are tailored to specific use-cases, or too costly for one-time-use scenarios. In this paper we argue that exposing a debugging scripting interface in mainstream debuggers helps in solving many challenging debugging scenarios. For this purpose, we present Sindarin, a scripting API that eases the expression and automation of different strategies developers pursue during their debugging sessions. Sindarin provides a GDB-like API, augmented with AST-bytecode-source code mappings and object-centric capabilities. To demonstrate the versatility of Sindarin, we reproduce several advanced breakpoints and non-trivial debugging mechanisms from the literature

    Analysis and exploration for new generation debuggers

    Get PDF
    International audienceLocating and fixing bugs is a well-known time consuming task. Advanced approaches such as object-centric or back-in-time debuggers have been proposed in the literature, still in many scenarios developers are left alone with primitive tools such as manual breakpoints and execution stepping. In this position paper we explore several advanced on-line debugging techniques such as advanced breakpoints and on-line execution comparison, that could help developers solve complex debugging scenarios. We analyse the challenges and underlying mechanisms required by these techniques. We present some early but promising prototypes we built on the Pharo programming language. We finally identify future research paths by analysing existing research and connecting it to the techniques we presented before

    Design and Implementation of a Backward-In-Time Debugger

    Get PDF
    International audienceTraditional debugging and stepping execution trace are well-accepted techniques to understand deep internals about a program. However in many cases navigating the stack trace is not enough to find bugs, since the cause of a bug is often not in the stack trace anymore and old state is lost, so out of reach from the debugger. In this paper, we present the design and implementation of a backward-in-time debugger for a dynamic language, i.e., a debugger that allows one to navigate back the history of the application. We present the design and implementation of a backward-in-time debugger called UNSTUCK and show our solution to key implementation challenges

    Exploring run-time reduction in programming codes via query optimization and caching

    Get PDF
    Object oriented programming languages raised the level of abstraction by supporting the explicit first class query constructs in the programming codes. These query constructs allow programmers to express operations on collections more abstractly than relying on their realization in loops or through provided libraries. Join optimization techniques from the field of database technology support efficient realizations of such language constructs. However, the problem associated with the existing techniques such as query optimization in Java Query Language (JQL) incurs run time overhead. Besides the programming languages supporting first-class query constructs, the usage of annotations has also increased in the software engineering community recently. Annotations are a common means of providing metadata information to the source code. The object oriented programming languages such as C# provides attributes constraints and Java has its own annotation constructs that allow the developers to include the metadata information in the program codes. This work introduces a series of query optimization approaches to reduce the run time of the programs involving explicit queries over collections. The proposed approaches rely on histograms to estimate the selectivity of the predicates and the joins in order to construct the query plans. The annotations in the source code are also utilized to gather the metadata required for the selectivity estimation of the numerical as well as the string valued predicates and joins in the queries. Several cache heuristics are proposed that effectively cache the results of repeated queries in the program codes. The cached query results are incrementally maintained up-to-date after the update operations to the collections --Abstract, page iv
    corecore