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ABSTRACT
A technique for synthesizing iterators from declarative abstraction
functions written in a relational logic specification language is de-
scribed. The logic includes a transitive closure operator that makes
it convenient for expressing reachability queries on linked data struc-
tures. Some optimizations, including tuple elimination, iterator
flattening, and traversal state reduction, are used to improve per-
formance of the generated iterators.

A case study demonstrates that most of the iterators in the widely
used JDK Collections classes can be replaced with code synthe-
sized from declarative abstraction functions. These synthesized it-
erators perform competitively with the hand-written originals.

In a user study the synthesized iterators always passed more test
cases than the hand-written ones, were almost always as efficient,
usually took less programmer effort, and were the qualitative pref-
erence of all participants who provided free-form comments.

Categories and Subject Descriptors
D.1.5 [Programming Techniques]: Object-oriented programming;
D.2.3 [Software Engineering]: Coding tools and techniques

General Terms
Languages

Keywords
iterator, Java, Alloy, abstraction functions, synthesis

1. INTRODUCTION
In many modern specification languages (e.g., Larch/Modula-

3 [18], JML [2, 23], Jahob [21, 50], JFSL [6, 49]) the abstract state
of an ADT is described by a set of specification fields. Each spec-
ification field has an associated abstraction function that computes
its abstract value from the concrete representation [12]. If these ab-
straction functions are written in a declarative logic then they are
usually used for static verification (e.g., Larch/Modula-3 [18], Ja-
hob [21, 50] and JFSL [6, 49]). If these abstraction functions are
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written in executable imperative code then they are usually used for
runtime verification (e.g., JML [3]). Abstraction functions are also
used for data structure repair [5] and in refinement [32].

In previous work [38] we showed that abstraction functions can
be used to define object equality, and that executable abstraction
functions can be used to generate executable implementations of
object equality and hashing methods. These automatically gen-
erated implementations pass more object-contract compliance test
cases than the implementations hand-written by expert program-
mers [38]. Object-contract compliance is notoriously difficult (e.g.,
[1, 34, 35, 37, 46]).

There are many good reasons for writing abstraction functions.
Yet programmers in practice seem not to write them quite as of-
ten as a researcher might hope. We conjecture that the main rea-
son for this is that the software engineering benefits of specifying
abstraction functions feel, for many programmers, somewhat re-
moved from the task of producing running code. Therefore, we
hope to tip the balance by synthesizing imperative code directly
from declarative abstraction functions. Our goal is to justify speci-
fying abstraction functions in terms of the task of producing work-
ing code. Once the programmer has abstraction functions they can
then reap all of the other benefits mentioned above.

For a typical ADT implementation a one or two line declarative
abstraction function can replace dozens of lines of imperative code.
A number of researchers have commented on the difficulty of writ-
ing iterators by hand in Java-like languages [15, 20, 29, 30, 33].

Our user study demonstrates that, with relatively little training, it
takes less effort to write declarative abstraction functions than the
imperative iterators that we synthesize from them. Our user study
and a case study demonstrate that the generated code is competitive
with hand-written code in terms of both speed and space. The case
study also demonstrates that our approach is applicable to a wide
range of important cases.

Our work is related to a wide variety of other works, including
executable specifications, heap query languages, query-based de-
bugging, and heap traversal frameworks. In summary, our work is
distinguished from the prior research in that our queries (abstrac-
tion functions) are written in a relational logic that includes both
join and transitive closure operators and is usable for static verifi-
cation. Our work therefore has greater synergy with other software
engineering tasks that make use of specifications. We discuss re-
lated work in more detail below.

2. JFORGE SPECIFICATION LANGUAGE
We work with the JForge Specification Language (JFSL) for Java

(i.e., imperative object-oriented) programs based on the Alloy [14]
relational logic. JFSL was developed to support static verification
of functional properties of single-threaded programs [6, 49].
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This section gives a brief overview of the pertinent features of
JFSL. The expressions and formulæ of JFSL are essentially Al-
loy. JFSL adds on top of this special annotations to connect these
expressions and formulæ to code. Yessenov discusses [49] the
syntax [49, §3] and semantics [49, §4] of JFSL in detail. The
JFSL annotations include specification field and abstraction func-
tion definition (@SpecField), class invariants (@Invariant), method
pre-conditions (@Requires and @Returns), method post-conditions
(@Ensures), and method frame-conditions (@Modifies). We are pri-
marily interested in the @SpecField annotation, which is where the
programmer declares abstraction functions. The general form of
the @SpecField annotation is: @SpecField(" f : r from g | α "), where
f is the name of the specification field being defined, r is an expres-
sion that describes the multiplicity and type of f ’s range, g is f ’s
data group [24], and α is a formula describing f ’s abstraction func-
tion. We do not make use of the data group g and so it is excluded
from the listings and from further discussion.

The abstraction function α is a JFSL formula. It is most com-
monly of the form this. f = e, where e is some Alloy/JFSL expres-
sion. However, the abstraction function α does not need to be in
this assignment-like equational form. Any valid JFSL formula will
do. Another common form for α is p(e1, e2, ..., en, this. f ), where p
is some logical predicate and ei are JFSL expressions. We provide
a library of such predicates, mostly for working with sequences, for
the programmer’s convenience.

In our case study we replace (almost) all manually written iter-
ators in the JDK Collections v1.4 with iterators synthesized from
declarative abstraction functions written in JFSL. The most inter-
esting examples from this case study are TreeMap and HashMap,
which are listed in Figures 1 and 2, respectively. We will use the
TreeMap.entries abstraction function as our ongoing example.

In JFSL fields are modelled as binary relations. Some common
JFSL/Alloy operators used in the abstraction functions for TreeMap
(Figure 1) include relational join (.), reflexive transitive closure (∗),
union (+), and set difference (−).

@SpecField({
"public entries : set Map.Entry |

this.entries = this.root.∗(left+right) − null",
"public keys : set Object | this.keys = this.entries.key",
"public values : set Object | this.values = this.entries.value" })

public class TreeMap extends AbstractMap
implements SortedMap, Cloneable, Serializable

Figure 1: Spec. fields and abstraction funs for java.util.TreeMap

The specification fields and abstraction functions for HashMap
are listed in Figure 2. The abstraction function for the entries spec-
ification field is the most interesting of the three. It makes use to
two JFSL keywords: elems and int. The latter represents the set of
all integers. The former is a ternary relation that maps array objects
to their contents. The content of an array is modelled as a binary
relation from ints to objects.

@SpecField({
"public entries : set Map.Entry |

this.entries = (int.(this.table.elems)).∗next − null",
"public keys : set Object | this.keys = this.entries.key − null",
"public values : set Object | this.values = this.entries.value" })

public class HashMap extends AbstractMap
implements Map, Cloneable, Serializable

Figure 2: Spec. fields and abstraction funs for java.util.HashMap

3. EXECUTING NAVIGABLE EXPRS.
The abstract value of each specification field is a set or a se-

quence of concrete objects. We synthesize Java iterators to yield
these sets or sequences. Our technique is a syntax-directed transla-
tion in which each node in the abstraction function AST is compiled
into an iterator that consumes the output of the iterators correspond-
ing to its child nodes.

We apply three optimizations to improve the runtime character-
istics of the code synthesized from navigable expressions. First, we
define navigable expressions so that no intermediate tuples need be
constructed during their evaluation (tuple elimination). Our gener-
ated code is structured as a composition of streams represented as
Java iterators. Our second optimization is to flatten iterators when
the number of elements that they will return can be determined at
compile time. Iterator flattening involves unrolling the iterator and
inlining it into its caller. Our final optimization requires an analy-
sis of both the abstraction function and the program to determine if
the portion of the heap to be navigated by the abstraction function
is tree-like or cyclic. If the portion of the heap to be traversed is
always tree-like then the execution of the abstraction function does
not need to remember previously visited objects.

The remainder of this section is organized as follows: an exam-
ple of a synthesized iterator; definition of navigable expressions;
definition of valuation functions for synthesis; descriptions of tuple
elimination and traversal state reduction optimizations.

3.1 Example Generated Code
Figure 3 lists the code generated for the reflexive-closure-join (.∗)

node in our example abstraction function (this.root.∗(left+right)−null)
from java.util.TreeMap. This code has been reformatted for presen-
tation, excess braces removed, etc.

Our synthesizer is written in Meta-AspectJ [13].

public class GeneratedIterator1 implements Iterator {
private final Deque stack = new ArrayDeque(10);
private TreeMap.Entry o = null;

public GeneratedIterator1(final TreeMap.Entry obj) { this.o = obj; }

public boolean hasNext() {
if (o != null) return true;
if (!stack.isEmpty()) return true;
return false;

}
public Object next() {

if (!hasNext()) throw new NoSuchElementException();
while (o != null) {

stack.push(o);
o = o.left; // iterator inlined here

}
assert (!stack.isEmpty());
TreeMap.Entry result = (TreeMap.Entry) (stack.pop());
o = result.right; // iterator inlined here
return result;

}

Figure 3: Example of generated code

The iterators corresponding to the union operator (+) and field
accesses (left and right) have been inlined into this code. The value
expected by the constructor is the result of evaluating this.root.

Since the programmer has subtracted null at the top level there
is no need for this code to return null. Our synthesizer takes ad-
vantage of this observation by removing flags and conditionals that
would otherwise be present.



(a) Standard definitions (b) Reduced-state definitions
U :: UnaryExpr→ Heap→ Set U :: UnaryExpr→ Heap→ Sequence

U[[this]](h) = h(this)
U[[null]](h) = {null}
U[[u1 + u2]](h) = U[[u1]](h) ∪ U[[u2]](h)
U[[u1 − u2]](h) = U[[u1]](h) − U[[u2]](h)
U[[u.b]](h) = B[[b]](h, U[[u]](h))
U[[u.^b]](h) = U[[u]](h).^B[[b]](h)
U[[u.*b]](h) = U[[u]](h) ∪ U[[u.^b]](h)
U[[int.q]](h) = {o | ∃ i | 〈i, o〉 ∈ Q[[q]]}

U[[this]](h) = {〈0, h(this)〉}
U[[null]](h) = {〈0, null〉}
U[[u1 + u2]](h) = U[[u1]](h) � U[[u2]](h)
U[[u1 − u2]](h) = U[[u1]]
U[[u.b]](h) = B[[b]](h,U[[u]](h))
U[[u.^b]](h) = traverse(b, h,U[[u]](h))
U[[u.*b]](h) = U[[u]](h) � U[[u.^b]](h)
U[[int.q]](h) = Q[[q]](h)

B :: BinaryExpr→ Heap→ Set→ Set B :: BinaryExpr→ Heap→ Sequence→ Sequence
B[[b1 + b2]](h, s) = B[[b1]](h, s) ∪ B[[b2]](h, s)
B[[b1 − b2]](h, s) = B[[b1]](h, s) − B[[b2]](h, s)
B[[ f ]](h, s) = {〈o〉 | ∃ t ∈ s | 〈t, o〉 ∈ h( f ) }

B[[b1 + b2]](h, l) = B[[b1]](h, l) � B[[b2]](h, l)
B[[b1 − b2]](h, l) = B[[b1]](h, l)
B[[ f ]](h, l) = {〈i, o〉 | ∃ 〈i, t〉 ∈ l | 〈t, o〉 ∈ h( f ) }

Q :: SeqExpr→ Heap→ Sequence Q :: SeqExpr→ Heap→ Sequence
Q[[a]] = h(a)
Q[[q. f ]] = {〈i, o〉 | B[[ f ]](h, i.Q[[q]]) = o }

Q[[a]] = h(a)
Q[[q. f ]] = {〈i, o〉 | B[[ f ]](h, i.Q[[q]]) = o }

Operators and functions:
relational join: . transitive closure: ^ cardinality: # concatenation: l1 � l2 ≡ l1 ∪ { 〈i, o〉 | 〈i − #l1, o〉 ∈ l2}

traverse(b, h, l) ≡ let l′ = B[[b]](h, l) in if l′ = ∅ then ∅ else l′ � traverse(b, h, l′)
Variable naming conventions:

u unary expression f field expression q sequence expression s set of objects
b binary expression a array expression l sequence of objects h heap

Figure 4: Valuation functions

I[[u1 + u2]] = ∀ h | (U[[u1]](h) ∩ U[[u2]](h)) = ∅

I[[u1 − u2]] = ∀ h | (U[[u1]](h) ∩ U[[u2]](h)) = ∅

I[[int.q]] = ∀ h | @ i, j | i , j ∧ i.Q[[q]](h) = j.Q[[q]](h)

I[[b1 + b2]] = ∀ h | (B[[b1]](h) ∩ B[[b2]](h)) = ∅

I[[b1 − b2]] = ∀ h | (B[[b1]](h) ∩ B[[b2]](h)) = ∅

I[[u.*b]] = I[[u.^b]]
I[[u.b]] = ∀ h | @ o | ∃ p, q | p , q ∧ (p ∪ q) ∈ U[[u]](h) ∧ (〈p, o〉 ∪ 〈q, o〉) ∈ B[[b]](h)
I[[u.^b]] = ∀ h | (@ o | ∃ p, q | p , q ∧ (p ∪ q) ∈ (U[[u]](h) ∪ U[[u]](h).^B[[b]](h)) ∧ (〈p, o〉 ∪ 〈q, o〉) ∈ ^B[[b]](h)) ∧

(@ o | 〈o, o〉 ∈ ^B[[b]](h) ∧ ∃ x | x ∈ U[[u]](h) ∧ 〈x, o〉 ∈ ^B[[b]](h)) ∧
(@ p, q | p , q ∧ (p ∪ q) ∈ U[[u]](h) ∧ 〈p, q〉 ∈ ^B[[b]](h))

Figure 5: Optimization condition generation (quantification is over heaps that can be constructed by the program)

3.2 Navigable Expressions
Navigable expressions are a subset of the JFSL expression gram-

mar in that start from the receiver object (this), traverse fields only
in the forwards direction, and result in either a set or a sequence.

Figure 6 presents the grammar of navigable expressions. Produc-
tions are classified according to the arity of their output (unary or
binary) because the computation is different. The computed result
of a navigable expression is always a set or a sequence, and never a
binary relation. This restriction is important for enabling the tuple
elimination optimization.

The productions for transitive closure are coupled with a join:
.^ (join-transitive-closure) and .∗ (join-reflexive-transitive-closure).
This coupling enables the tuple elimination optimization and en-
sures that the result of a navigable expression is a set or a sequence.

3.3 Valuation Functions
Figure 4 gives the valuation functions for our translation. Fig-

ure 4 a gives the standard definitions, and Figure 4 b gives the defi-
nitions with reduced state (explained below).

The heap is modelled as a function from field names to binary
relations that map objects to the field’s value in that object. For
simplicity of the formalism names are treated as global here. Se-
quences are modelled as binary relations mapping consecutive in-
tegers to objects, starting at 0.

NavigableExpr F UnaryExpr
| SeqExpr

UnaryExpr F this
| null
| UnaryExpr + UnaryExpr
| UnaryExpr − UnaryExpr
| UnaryExpr.BinaryExpr
| UnaryExpr.^BinaryExpr
| UnaryExpr.∗BinaryExpr
| int.SeqExpr

BinaryExpr F FieldExpr
| BinaryExpr + BinaryExpr
| BinaryExpr − BinaryExpr

SeqExpr F ArrayExpr
| SeqExpr . FieldExpr

Figure 6: Grammar of navigable expressions

3.4 Tuple Elimination
Our first optimization is tuple elimination, a form of deforesta-

tion [47]. Consider our ongoing example: this.root.∗(left+right)−null.
The tuples for the relations root, left, and right exist as references
in the heap. However, the binary relation denoted by the union
(+) operator does not already exist in the heap. The idea of defor-
estation [47] is to avoid explicitly constructing such intermediate
values.



We have defined navigable expressions so that tuple elimination
for these intermediate binary nodes is always possible. The key in-
sight is that the only unary AST nodes with binary children involve
joins and the only binary AST leaves are fields (the tuples for which
already exist in the heap as references). Therefore we can push the
computation of the joins down into the leaf nodes.

Tuple elimination is reflected in the valuation functions of Fig-
ure 4 a in two ways. First, in the type of function B, which is Bi-
naryExpr → Heap → Set → Set, rather than BinaryExpr → Heap
→ BinaryRelation, suggesting that we might not need to explicitly
construct the tuples of the binary relation, but instead provide the
left column of the relation as an input and have only the right col-
umn as the output. Second, in the function for join (U[[u.b]](h)),
where the value of the unary expression u is used as an input in the
evaluation of the binary expression b. With tuple elimination, the
result of a binary union (the + in our ongoing example) is the unary
union of the output of its children (left and right).

3.5 Traversal State Reduction
The heap of an object-oriented program can, and often does,

involve both directed and undirected cyclic references. Conse-
quently, the traversal of the heap to accumulate the results of a
navigable expression may need to remember which objects have
been visited.

However, in some cases we know statically that the traversal will
never encounter the same object twice, as in our java.util.TreeMap
example. If the code of java.util.TreeMap never constructs cyclic
heaps then the traversal implied by our ongoing abstraction func-
tion will never visit the same object twice. In other words, if the
code of TreeMap respects some invariants then the abstraction func-
tion traversal will never visit the same object twice.

Figure 5 shows how to derive the desired invariants, which we
call optimization conditions, from the abstraction function. These
optimization conditions may be discharged in a variety of ways.
We generate the optimization conditions in JFSL/Alloy to support
static verification and also as imperative Java to support runtime
verification.

There are three matters of interest: (1) how this state-reduction
changes the computations described above; (2) how the optimiza-
tion conditions are generated from the abstraction function; and (3)
establishing that if the optimization conditions hold then the state-
reduced valuations may be substituted for the normal valuations.

Reduced-State Computations.
Figure 4 b lists alternative definitions for the valuation functions

of Figure 4 a. There are a number of differences:

• set union has been replaced by sequence concatenation;

• set difference is simply the minuend;

• the computation of expressions of the form int.q assumes that
all of the objects in the sequence are unique;

• we introduce the helper function traverse, which can be a
simple tree traversal in any order (e.g., in-order, depth-first,
breadth-first, etc.).

It is straightforward to implement these reduced-state computa-
tions in a lazy manner.

Optimization Condition Generation.
The optimization conditions generated for each production in

the navigable expression grammar are listed in Figure 5. These

optimization conditions are quantified over heaps that can be con-
structed by the program. In other words, these optimization condi-
tions are heap invariants.

Many of the optimization conditions are fairly simple. For ex-
ample, for a union production the optimization condition says that
the intersection must be empty.

The optimization condition for join is slightly more complicated.
It says that there are no two distinct source objects p and q that lead
us to the same target object x.

The optimization condition generation patterns for join-closure
and join-reflexive-closure are the same, and are complicated. Again,
the intuition is to ensure that the navigation is tree-like. There are
three conditions: (1) there are no two distinct source objects that
lead to the same target object; (2) there are no reachable cycles; (3)
the navigation does not enter the tree at two hierarchically related
positions. The first two conditions establish that the relation on the
right-hand side is tree-like. The third condition checks that the left-
hand side enters that tree appropriately. We learned about this third
condition through the soundness analysis discussed next.

Soundness of Optimization Condition Generation.
How do we know that the optimization conditions described by

Figure 5 are sufficient to ensure that the computations given in Fig-
ure 4b will produce the same results as the ones given in Figure 4a?
We used a number of Alloy models:

• the syntax of navigable expressions;

• the semantics of navigable expressions;

• the optimization condition generation;

• a forested model of the reduced-state computations, in which
intermediate tuples are present;

• a deforested model of the reduced-state computations, in which
the intermediate tuples have been eliminated.

The analysis searches for a field abstraction function AST and a
program heap (constrained by the optimization conditions for the
given field abstraction function) for which the reduced-state com-
putation is inconsistent with the semantics. The model contains an
Alloy rendition of the navigable expression grammar, and the anal-
ysis uses that to construct possible abstraction functions. No coun-
terexample is found, giving support to the claim that that reduced-
state traversals produce semantically correct results when the opti-
mization conditions hold. The specific checks that we performed
with the Alloy Analyzer were:

• the forested computation model is consistent with the seman-
tics for every node in the abstraction function AST;

• the deforested computation model is consistent with the se-
mantics for every unary node in the abstraction function AST,
which includes the root node;

• the forested and deforested models always produce the same
ultimate results for every abstraction function and program
heap.

The Alloy Analyzer performs a bounded analysis. We checked
that optimization condition generation is sound for all abstraction
functions with up to eight nodes in their AST, which is large enough
for the examples in our case study.



4. CASE STUDY: JDK COLLECTIONS V1.4
We evaluate the expressiveness and performance of our approach

on a subset of the standard Java libraries, the JDK Collections v1.4.
This data-structure library has a high density of interesting abstrac-
tion functions. Figure 7 lists the five abstract types in the JDK
Collections v1.4 that we are interested in, counts their subtypes,
and names their specification fields.

Type Subtypes Specification Fields
A

bs
tr

ac
t

C
on

cr
et

e

To
ta

l

List 2 14 16 values
Set 2 22 24 elts
Map 2 13 15 entries, keys, values
Map.Entry 0 9 9 key, value
Iterator 5 29 34 n/a
Total 11 87 98

Figure 7: Count of interesting classes in JDK Collections v1.4

We were able to automatically synthesize 25 out of the 29 con-
crete iterators in the JDK Collections v1.4 from abstraction func-
tions written in JFSL. The remaining cases that our approach did
not cover are:

• Two map implementations do not have instantiated Entry ob-
jects. Our synthesizer produces iterators that return objects
that already exist: our iterators do not instantiate new objects.
Affected specification fields are: IdentityHashMap.entries and
Collections.UnmodifiableMap.UnmodifiableEntrySet.elts.

• Collections.UnmodifiableCollection.iterator() is a wrapper defined
in terms of the code of the wrapped object rather than in
terms of a specification field.

• TreeMap.SubMap.entries: The TreeMap class requires that its
keys be drawn from a totally ordered domain, such as strings
or integers. Consequently, it supports an operation to create
a ‘submap’ comprising only entries whose keys are within
some lower and upper bound in the key domain. Making
the determination that a key falls within the selected range
requires calling a Comparator object, and that is beyond the
abilities of our current synthesizer.

• TreeMap.SubMap.keySet.iterator(): Normally this inherits the
implementation from AbstractMap.KeySet. Our synthesized
code for AbstractMap.KeySet works for every other subclass
of AbstractMap, but because of the issue with SubMap dis-
cussed in the previous bullet point the synthesized code does
not work for SubMap.

Regression Test Results. We tested our synthesized iterators with
the JCK and with a test suite generated by the Randoop [35] tool.
Our synthesized iterators do not yet support the remove method and
also do not yet throw ConcurrentModificationException.

All of the 20,661 Randoop test cases passed except for those that
failed because the remove method is not supported.

Of the 1261 JCK test cases we ran, 1212 passed; 19 failed be-
cause the remove method is not supported; 27 failed because our
iterators do not throw ConcurrentModificationException; and 3 failed
for other reasons. JCK test cases BitSet2011 and Vector2037 failed
due to hard-coded hash code and toString values, respectively.

JCK test case IdentityHashMap2027 failed for a more interesting
reason. The representation of IdentityHashMap does not explicitly
distinguish between absent values and null values, and so our ab-
straction function did not properly capture the programmer’s intent
in this case. Interestingly, the representation of IdentityHashMap
does explicitly distinguish between null and absent keys by using a
special token. We think the best resolution here would be to change
the code to use the special token approach for values as well.

Optimization Condition Discharge. In order to synthesize code
with the traversal state reduction optimization we need to know that
the optimization conditions hold: i.e., we need to know that the
traversals are tree-like. We discharged the optimization conditions
dynamically by synthesizing code that checks the optimization con-
ditions and then injecting that code at public method boundaries.
We ran these instrumented versions of the JDK collections with
both the JCK and the Randoop tests. All of the optimization condi-
tions for all specification fields passed except for the specification
field Map.values. A map may have two distinct keys that map to
the same value: e.g., 〈a, x〉 and 〈b, x〉. Abstraction functions for
Map.values therefore cannot use the state reduction optimization
and must dynamically track visited objects.
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Figure 8: Performance comparison of synthesized iterators
(varying lines) and original hand-written iterators (straight
lines) for common JDK collections classes. Numbers are times
in milliseconds. Measurements taken for collections of various
sizes: 100k, 250k, 500k, 750k, 1M, 1.5M, 2M. Summary column
at right shows median time per element in nanoseconds.

4.1 Performance
Figure 8 presents performance measurements for our synthesized

iterators on the six most common JDK collections classes. Mea-
surements were taken on a 3.4GHz quad-core i7 with 16GB of
physical RAM, running JDK 1.6 with a 1GB heap. No other users



were logged in, and no other computationally intensive processes
were running. Times in the figure were produced in the follow-
ing way: after a warmup run, seven raw measurements were taken;
then the best and worst were discarded, and the displayed number
is the arithmetic mean of the middle five. A different selection of
random integers was used for each of the seven raw measurements.

The horizontal lines in Figure 8 visualize the time taken by the
hand-written iterators that ship with the JDK. These times are the
baseline for comparison. The variables lines in Figure 8 visualize
the time taken by our synthesized iterators. If the variable line is
below the straight line then our code is faster; if the variable line
is above the straight line then our code is slower. The numbers in
Figure 8 are times in milliseconds. The data points in Figure 8 are
for different sizes of collections: 100k, 250k, 500k, 750k, 1M, 2M
random integers.

The summary column on the right hand side of Figure 8 gives the
median time per element in nanoseconds. In other words, a charac-
terization of how long it takes to call the next method. The original
hand-written iterators have a lower per-element times in four out
of the six cases. Our synthesized code has lower per-element times
for HashMap and HashSet.

We draw two main conclusions from this performance analysis:
the synthesized code scales to large inputs; and the synthesized
code runs competitively with the hand-written code. Sometimes
the synthesized code is faster, sometimes the hand-written code is
faster. In either case the difference is not a large factor. For a per-
formance critical iterator it probably makes sense to specify the ab-
straction function first and use the synthesized iterator as a bench-
mark both for performance and for correctness. In less performance
critical contexts the potential advantages of implementing by hand
may not be cost-effective.

5. USER STUDY
We asked a group of programmers to write both JFSL/Alloy ab-

straction functions and a Java iterator for a b-tree representing a set
of integers. Our system synthesized iterators from their abstrac-
tion functions. Let Jp name the iterator written by hand in Java
by participant p. Let Ap name the abstraction function written in
JFSL/Alloy by participant p. Let S p name the iterator synthesized
by our system from Ap. In the subsequent text we will often drop
the p subscript when speaking of a participant in general.

We used tests to assess the correctness of both the J and S iter-
ators. We gave the participants a set of tests, U, and a test harness
to run them. We kept another set of tests, V , in reserve to run after
the users had submitted their work (J and A).

We summarize the results (Figures 10, 11, and 9), then explain
the experimental methodology, and then detail the results.

The main objective result of the study is that despite years of
experience programming in Java (Figure 9) and some previous ex-
perience implementing iterators (Figure 9), no participant was able
to write an iterator J that passed all test cases (Figure 10). By con-
trast, with less than one day of training (Figure 9), every participant
wrote an abstraction function A that passed all tests (namely, the it-
erator S , synthesized from A, passed all tests).

The second objective result of the study (Figure 11) is that only
one user wrote an iterator J that was more efficient than our syn-
thesized iterator S ; two users wrote less efficient code by hand J
than we synthesized; the remaining participants achieved the same
efficiency as the synthesized code.

The third objective result of the study is that the time it takes to
write J or A varies by individual: some are faster with one and some
are faster with the other (Figure 9). The average of our participants
came out about the same.

The qualitative results of the study are (1) most participants pre-
ferred to write the abstraction function A rather than the iterator J,
once they got over the learning curve; and (2) participants found
the usability of our research prototype to be lacking.

Tests Failed
Hand-written Java J Synthesized Iterator S

User Basic Empty Orders Basic Empty Orders
P28 ×

P31 2
P22 × × 2–7
P01 × 2 all tests passed
P00 × × 2–7
P29 2,6,7
P24 × 2–5
P30 ×

Figure 10: Every hand-written iterator fails some test. Every
synthesized iterator passes all tests. The basic tests are the ones
we provided to paricipants. The empty test is an empty b-tree.
The orders column provides results when varying the fan-out of
the b-tree.

Space Efficiency
User Hand-written Java J Synthesized Iterator S
P28 O(n) O(log n)
P31 O(n) O(log n)
P22 O(log n) O(log n)
P01 O(log n) O(log n)
P00 O(log n) O(log n)
P29 O(1) O(log n)
P24 O(log n) O(log n)
P30 O(log n) O(log n)

Figure 11: Only one programmer wrote code that was more
space-efficient than the synthesized code. Two programmers
wrote code that was less space-efficient than the synthesized
code.

5.1 Methodology
The participants were all senior undergraduate software engi-

neering students in their 4A (penultimate) term. These students
have each had five industrial internships (20 months total) in addi-
tion to their schooling, as part of Waterloo’s co-operative education
program. The participants reported internships at companies such
as Amazon, Google, RIM, Sybase, etc. Participant 22, for example,
has had three internships at Google (12 months total).

All of the participants have studied binary trees and b-trees in
previous courses. None of the participants had previous knowledge
of abstraction functions. Experience with Java ranged between two
and five years, with an average of four years (Figure 9). All par-
ticipants had previously used iterators; only some participants had
previously written an iterator (indicated with ‘+I’ in Figure 9). Par-
ticipant 29 could not remember if she had ever written an iterator
(indicated with ‘?I’ in Figure 9).

All of the participants were taught Alloy in a course they were
enrolled in. This training occurred about a month before our study.
The course included two hours of lecture on Alloy and a group
assignment on spanning trees that was significantly harder than our
user study task and was expected to have taken about four hours.
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The mean of 6.4 hours (Figure 9) of previous Alloy experience is
consistent with this expectation.

Participants were provided with the following materials: a half-
page introduction to specification fields and abstraction functions;
example iterator implementations and abstraction functions for
SingletonIntSet and ArrayIntSet classes; an Alloy quick-reference
sheet; a book on Alloy [14]; and a data-structures textbook [4].

Participants were also provided with the b-tree source code, pic-
tures of b-tree instances, traversal pseudo-code, and an inefficient
iterator implementation. This inefficient iterator traverses the b-tree
and adds each element (integer) to a HashSet and then returns that
HashSet’s iterator. The b-tree source code was adapted from the
Java LDAP project (http://sf.net/projects/javaldap).

Participants were provided with a test harness and some basic
test cases (U). The harness ran these tests (U) on both J and S .
One test populated the b-tree with the integers from 1 to 10. The
other test populated the b-tree with a random set of ten integers.

The participants worked on their own laptops inside a virtual
machine image that we had prepared with the Eclipse IDE and all
of the necessary software.

Participants were provided with specification field declarations
for the b-tree. Their task was to write the associated abstraction
functions for those specification fields. For class BTNode partici-
pants were expected to write the following expression (italics):

children : set BTNode | this.children = int.(this.btnArray.elems)
For class BTreeIntSet participants were expected to write the fol-
lowing two expressions (given in italics):

nodes : set BTNode | this.nodes = this.root.*children
values : set Integer | this.values = int.(this.nodes.kArray.elems)
Before attempting the b-tree exercise participants were required

to complete an analogous exercise with a binary tree to get them
familiar with writing abstraction functions, implementing iterators,
and the tool environment. We adapted the binary tree implementa-
tion used for this warmup exercise from Kodkod [44].

Participants were allowed to choose whether they preferred to
specify the abstraction functions A first or implement the iterator
J first. These preferences are indicated by the semi-circles on the
timing bars in Figure 9. Five of the participants specified abstrac-
tion functions A first and three implemented the iterator first J. Half
of the participants were faster at the task they performed first and
half were faster and the task they performed second.

Participants were compensated for their time with bonus marks
in a course. The course had 74 students enrolled, divided into 20
project groups of 3-4 students each. Five of these groups elected to
conduct user studies for their project. Students in the course could
choose to spend their time participating in as many of these studies
as they wanted to (except for any study that they were conducting).
All participants in all studies were compensated at the same rate. In
total, 49 students in the course participated in the studies: 22 par-
ticipated in exactly one study; 15 in two studies; 7 in three studies;
3 in four studies; and 2 in all five studies. Participants were com-
pensated for their time in a study even if they left the study partway
through (as 9 of the 17 participants in our study did).

5.2 Results
We discuss four results: correctness (Figure 10), efficiency (Fig-

ure 11), time on task (Figure 9), and qualitative feedback.

5.2.1 Correctness
Figure 10 details the test cases that were passed and failed by

hand-written iterators J and synthesized iterators S : the latter passed
all tests; whereas every hand-written iterator failed some test.

The test cases are partitioned into three groups in Figure 10: ba-
sic, empty, and orders. The basic tests are the ones we provided to
the participants: one test adds ten sequential integers (0–9) to the
b-tree, while the other test adds ten random integers. Three partic-
ipants submitted code J that failed these basic test cases.

We ran the empty and order tests after the participants had com-
pleted their tasks. The empty test checks that an iterator on an

http://sf.net/projects/javaldap


empty tree has no elements. Five out of eight of the hand-written
iterators J failed this test. The order tests add ten sequential or ten
random integers to the b-tree, but first set the ‘order’ of the tree to
a different value. ‘Order’ is sometimes used to refer to the number
of keys or number of children of a b-tree node: different authors
use the term differently. In the Java LDAP b-tree implementation,
a node may have up to 2k children and 2k − 1 keys, where k is the
order of the tree. The basic tests we provided to the participants
set the tree order at 3. Our orders tests exercised orders 2 through
7. Six out of eight hand-written iterators J failed at some order.
The set of orders that an implementation failed on seems to vary,
indicating that there might be a number of corner cases to consider
and that each programmer only considered a subset of these cases.

No participant wrote extra test cases. We did not ask them to do
so. Doing so would have increased their times.

5.2.2 Code Efficiency
Our synthesized iterators S for the b-tree use O(log n) space to

store their position in the tree. As shown in Figure 9, this is the
same space used by most of the hand-written iterators J. Two par-
ticipants, 28 and 31, used more space: O(n). Only one participant,
29, used less space: O(1).

The space used by the participants’ iterators J varied substan-
tially. Most participants wrote iterators J that used O(log n) space:
i.e., their iterators J used a stack to remember their position in the
tree, which is what our synthesized iterators S do for this b-tree
implementation.

Only Participant 29 wrote an iterator J29 that used less space.
She had the insight that the parent pointer could be used to traverse
up the tree, and so the stack is not necessary: a constant amount
of space is all that is required. This insight is beyond the current
capabilities of our synthesizer.

Participants 28 and 31 wrote iterators J that used linear space
(i.e., more than our synthesized code). Participant 28’s J28 eagerly
traversed the entire tree and stored it in a list, in spite of the fact that
we had already provided the participants with an implementation
along these lines and told them to write something more efficient.
Participant 31’s J31 encoded the state of the traversal in the nodes
themselves by adding fields to the nodes to indicate whether they
had been visited already. This design consumes extra space even
when an iteration is not in progress and it prevents multiple iterators
from operating simultaneously.

5.2.3 Task Times
Figure 9 visualizes the time taken by each participant for each

task (A and J). Five of the eight participants were faster at writ-
ing the abstraction function A, and three were faster at writing the
Java iterator J. The time taken to specify A ranged from 15 to 80
minutes, with a mean and median of 42 minutes. The time taken to
implement J ranged from 29 minutes to 145 minutes, with a mean
of 63 minutes and a median of 45 minutes. The mean, median,
minimum, and maximum times for specifying A are all less than
the corresponding times for implementing J. A histogram analysis
(not shown) concludes that the task times are normally distributed.

The semi-circles in Figure 9 indicate which task the participant
performed first. There is no correlation between which task the
participant performed first and which task they performed fastest.

The main conclusion that we draw from this task time data is
that there is substantial variation amongst programmers: task time
is not strongly correlated with any of the other measurements we
have made. This inconclusive task timing result is in contrast to
the categorical results we observed in terms of the correctness and
efficiency of the code J written by the participants and the synthe-

sized code S derived from the programmer’s abstraction function
A. In other words, the choice of technology does not have strong
predictive value for how long it will take a programmer to produce
a first draft, but it does strongly predict whether that first draft will
be correct and efficient.

5.2.4 Qualitative Feedback
Participants were asked to complete a questionnaire that included

a free-form question at the end: “What are your general comments
about this user study?” All eight participants who completed the
study also completed the questionnaire. Seven of the participants
who quit the study before completing the b-tree exercise submit-
ted a questionnaire. We report on the qualitative impressions of
all fifteen of these participants, since they all had some qualitative
experience with the ideas and tools.

Eight of these fifteen made a comment indicating that they were
not as familiar with JFSL/Alloy and how it mapped to Java as they
would like. Verbally, but not in writing, some participants also con-
fessed to us that they had not properly read the background material
that we provided, and that if they had done so that would have saved
them some time specifying the abstraction function A.

Six participants complained about the prototype nature of our
synthesizer: its poor error messages and lack of debugging support.
Four participants complained about the environment we provided:
the virtual machine, build process, IDE, etc.

Three participants complained that the study took too long, in-
cluding one participant who completed the study.

Participant 01 was concerned that “there is a little too much
magic going on”, but also said that the abstraction functions A were
easier to write than the iterators J. Participant 27 also expressed
concerns about not knowing what is going on behind the scenes,
but also said: “The problem with coding in Java is that there is a lot
of things that can go wrong. Even for a simple binary tree iterator,
it will take at least a few tens of lines. Error prone.”

All seven participants who commented on the relative ease of
specifying abstraction function A versus implementing iterator J
(including participants who were faster at writing the Java code)
said that the Alloy was easier once they understood how it worked.
Participant 22 captured the general sentiment: “I do find the Alloy
easier, once I see it and understand it. It’s easy to write inefficient
Java code; harder to write it efficiently.”

6. RELATED WORK
Synthesis from relational specifications. The RelC system [9]

takes as input a relational specification, an optional decomposition
specification, and a library of base data structures; it produces as
output an implementation of the relational specification in terms of
the base data structures. Our system is complementary to RelC:
our system takes as input a base data structure and a relational ab-
straction function, and produces as output an iterator over that base
data structure. The RelC system produces code that calls this it-
erator. The relational specification language accepted by RelC is
richer than the language accepted by our system, but our system
produces code that navigates individual pointers whereas RelC pro-
duces code that manipulates the API’s of the base data structures.

Jennisys [25] synthesizes programs from specifications (includ-
ing specification fields and abstraction functions) using program
verification technology. Our technique uses this kind of heavy-
weight technology only for optimization: in the absence of veri-
fication tools our technique will still synthesize executable code.

Specification execution without synthesis. Some recent work
uses Kodkod/SAT to execute partial specification on concrete in-
puts [31, 39, 41]. This approach does not synthesize source code.



This approach can be very competitive with hand-written code for
algorithmically complex problems, but usually does not scale to
large inputs. We synthesize source code that scales to large inputs
for algorithmically simple problems. Our approach and the SAT-
based execution approach are therefore complementary.

Executing algebraic specifications. There is a long history of
executing algebraic specifications by term re-writing (e.g., [7, 10,
11, 16, 17, 43]). This is related to our work in that it has to do
with executing specifications, but the kind of specification language
used is different and the synthesis technique is different.

Using specifications to improve program performance. Our static
cycle detection optimization uses specifications to improve pro-
gram performance. This kind of approach appears uncommon.

Vandevoorde and Guttag [45] proposed a system where the pro-
grammer would write two implementations of a given method: a
general purpose one and a specialized one that performed faster
if extra pre-conditions held. The programmer would also write
specifications for these two implementations, giving the extra pre-
conditions for the specialized implementation. The system would
then analyze each call site to determine if the faster implementation
could be used at that site. In this approach the programmer writes
two implementations and two specifications, and the system does
not generate any code. In our approach the programmer writes only
one specification, and the system analyses the specification and the
program to determine if it can generate more efficient code.

Dynamic detection of violated invariants. Demsky et al. [5] de-
velop their own specification language for expressing data structure
invariants. Their system monitors the invariants at runtime, and if
it detects a violation it executes a repair action. Monitoring the
invariants requires executing the abstraction functions. While this
language has sets and binary relations, it does not have any of the
usual set operations such as union or intersection; it also does not
have transitive closure. In their language, abstraction functions are
expressed as a set of rules, where each rule has a quantifier, a guard,
and a consequence. The rules are evaluated dynamically until a
fixed-point is reached. One gets the effect of union, intersection,
closure, etc., through these fixed-point semantics.

They perform three optimizations in their dynamic evaluation of
the abstraction functions: determining when the fixed-point can be
computed in a single pass, and two deforestations (which they call
‘relation elimination’ and ‘set elimination’). Their relation elim-
ination deforestation is analogous to our tuple elimination. Their
set elimination deforestation has a similar result as our static cycle
detection, but achieves this end in a different way. Their fixed-point
elimination optimization is obviously particular to their specifica-
tion language. We note that the linked data structure abstraction
functions that we discuss in this paper would not be candidates for
this fixed-point elimination optimization.

Heap traversal frameworks. The most important difference be-
tween our work and heap traversal frameworks such as Demeter [28],
DiSTiL [42], and Scrap Your Boilerplate [22] is that with our sys-
tem the programmer uses a language designed for verification, rather
than with a language designed for data structure traversal. Our
approach, therefore, has synergy with other software engineering
tasks that make use of specifications.

Heap query languages & query-based debugging. Our work is
related to heap query languages such as JQL [48], FQL [36], and
DeAL [40]; and to query-based debugging [26, 27]. An important
difference with our work is that most of these query languages do
not include a transitive closure operator. Much of the power, sim-
plicity (for the programmer), and complexity (for synthesis) of our
approach comes from Alloy’s transitive closure operators.

DeAL [40] is an exception, as it includes reachability. DeAL’s
reachability facility computes reachability through any path in the
heap, whereas our approach follows only paths described by the
programmer in the abstraction function. There are some proper-
ties, such as object ownership, that are better handled by DeAL’s
approach. Most abstraction functions, however, require the pro-
grammer to specify the paths more precisely.

On the implementation side, the evaluation of DeAL predicates
piggy-backs on the garbage collector. This has the very nice prop-
erty of making the evaluation of the predicates almost free at run-
time. It also means that DeAL gets to use markbits for free (since
the GC needs to use markbits anyways). Therefore, our traver-
sal state reduction optimization is not relevant for DeAL. On the
other hand, DeAL predicates are evaluated against the entire heap,
whereas the iterators we synthesize typically look at only a small
subset of the heap.

Database query optimization. There is a vast literature on query
optimization in the database community. Two important issues in
this area are finding the appropriate tuples in a relation and deciding
on the direction in which to evaluate joins. These are not concerns
for us. We have defined navigable expressions so that we always
perform joins in the direction of the field references in the heap,
and we are only performing joins on objects that we have a handle
on (we never have to go searching through the heap looking for a
particular object).

7. CONCLUSION
Writing iterators in Java-like languages is hard [15, 20, 29, 30,

33]. We have developed a technique for synthesizing iterators from
declarative abstraction functions written in Alloy, a first-order rela-
tional logic with transitive closure.

Three optimizations were used to make the synthesized code
competitive with hand-written code: tuple elimination, iterator flat-
tening, and traversal state reduction. Traversal state reduction in-
volves generating putative invariants (optimization conditions) from
the abstraction function. We generate these optimization conditions
as logical formulæ and as executable code.

A case study of the widely used JDK Collections library demon-
strated that our approach is applicable to a wide range of practically
important cases and that the performance of the synthesized code
is competitive with hand-written code.

In a user study writing the declarative abstraction function and
having the iterator synthesized always produced code with fewer
errors; almost always produced equivalently efficient code (some
people write more efficient code, but more people write less effi-
cient code); usually took less programmer effort; and was the qual-
itative preference of all participants who provided feedback.

With a few hours of logic training and our synthesizer program-
mers can be more productive writing specifications than they are
writing iterators by hand. Specifying a declarative abstraction func-
tion is a more efficient way to write an iterator.
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