4 research outputs found

    Artificial intelligence-enabled probabilistic load demand scheduling with dynamic pricing involving renewable resource

    Get PDF
    Residential demand response is one of the key enabling technologies which plays an important role in managing the load demand of prosumers. However, the load scheduling problem becomes quite challenging due to the involvement of dynamic parameters and renewable energy resources. This work has proposed a bi-level load scheduling mechanism with dynamic electricity pricing integrated with renewable energy and storage system to overcome this problem. The first level involves the formulation of load scheduling and optimization problems as optimal stopping problems with the objective of energy consumption and delay cost minimization. This problem involved the real-time electricity pricing signal, customers load scheduling priority, machine learning (ML) based forecasted load demand, and renewable & storage unit profiles, which is solved using mathematical programming with branch-and-cut & branch-and-bound algorithms. Since the first-level optimization problem is formulated as a stopping problem, the optimal time slots are obtained using a one-step lookahead rule to schedule the load with the ability to handle the uncertainties. The second level is used to further model the load scheduling problem through the dynamic electricity pricing signal. The cost minimization objective function is then solved using the genetic algorithm (GA), where the input parameters are obtained from the first-level optimization solution. Furthermore, the impact of load prioritization in terms of time factor and electricity price is also modeled to allow the end-users to control their load. Analytical and simulation results are conducted using solar-home electricity data, Ausgrid, AUS to validate the proposed model. Results show that the proposed model can handle uncertainties involved in the load scheduling process along with a cost-effective solution in terms of cost and discomfort reduction. Furthermore, the bi-level process ensures cost minimization with end-user satisfaction regarding the dynamic electricity price signal

    A Customer Agnostic Machine Learning Based Peak Electric Load Days Forecasting Methodology for Consumers With and Without Renewable Electricity Generation

    Get PDF
    The adoption of electricity generation from renewable sources, as well as the push for a speedy electrification of sectors such as transportation and buildings, makes peak electric load management an essential aspect to ensure the electric grid’s reliability and safety. Utilities have established peak load charges that can amount to up to 70% of electricity costs to transfer the financial burden of managing these loads to the consumers. These pricing schemes have created a need for efficient peak electric load management strategies that consumers can implement in order to reduce the financial impact of this type of load. Research has shown that the impact of peak load charges can be reduced by acting on the intelligence provided by peak electric load days (PELDs) forecasts. Unfortunately, published PELDs forecasting methodologies have not addressed the increasing number of facilities adopting behind the meter renewable electricity generation. The presence of this type of intermittent generation adds substantial complexity and other challenges to the PELDs forecasting process. The work reported in this dissertation is organized in terms of its three main contributions to the body of knowledge and to society. First, the development and testing of a first of its kind PELDs forecasting methodology able to accurately predict upcoming PELDs for a consumer regardless of the presence or absence of renewable electricity generation. Experimental results showed that 93% and 90% of potential savings (approximately US142,129.01andUS 142,129.01 and US 123,100.74) could be achieved by a consumer with and a consumer without behind the meter solar generation respectively. The second contribution is the development and testing of a novel methodology that allows virtually any type of consumer to determine an efficient electricity demand threshold value before the start of a billing period. This threshold value allows consumers to proactively trigger demand response actions and reduce peak demand charges without receiving any type of signal or information from the utility. Experimental results showed 65% to 82% of total potential demand charge reductions achieved during a year for three different consumers: residential, industrial, and educational with solar generation. These results translate to US149.09,US 149.09, US 23,290.00, and US$ 107,610.00 in demand charges savings a year respectively. As a third contribution, we present experimental results that show how the implementation of machine learning based ensemble classification techniques improves the PELDs forecasting methodology’s performance beyond previously published ensemble techniques for three different consumers

    Dynamic Pricing in Smart Grids Under Thresholding Policies

    No full text
    corecore