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Residential demand response is one of the key enabling technologies which plays an important role
in managing the load demand of prosumers. However, the load scheduling problem becomes quite
challenging due to the involvement of dynamic parameters and renewable energy resources. This
work has proposed a bi-level load scheduling mechanism with dynamic electricity pricing integrated
with renewable energy and storage system to overcome this problem. The first level involves the
formulation of load scheduling and optimization problems as optimal stopping problems with the
objective of energy consumption and delay cost minimization. This problem involved the real-time
electricity pricing signal, customers load scheduling priority, machine learning (ML) based forecasted
load demand, and renewable & storage unit profiles, which is solved using mathematical programming
with branch-and-cut & branch-and-bound algorithms. Since the first-level optimization problem is
formulated as a stopping problem, the optimal time slots are obtained using a one-step lookahead
rule to schedule the load with the ability to handle the uncertainties. The second level is used to
further model the load scheduling problem through the dynamic electricity pricing signal. The cost
minimization objective function is then solved using the genetic algorithm (GA), where the input
parameters are obtained from the first-level optimization solution. Furthermore, the impact of load
prioritization in terms of time factor and electricity price is also modeled to allow the end-users
to control their load. Analytical and simulation results are conducted using solar-home electricity
data, Ausgrid, AUS to validate the proposed model. Results show that the proposed model can handle
uncertainties involved in the load scheduling process along with a cost-effective solution in terms
of cost and discomfort reduction. Furthermore, the bi-level process ensures cost minimization with
end-user satisfaction regarding the dynamic electricity price signal.
© 2022 University of Alcala. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction demand along with the reduction in greenhouse gas emissions
is still a challenging problem that must be solved on a global
scale to promote energy sustainability (Hoffman, 2022). In the
recent past, while reducing the supply-demand gap through the
combination of thermal, nuclear, and other energy resources (Wei

et al.,, 2019; Baniasadi et al., 2019; Moazeni et al., 2021; Gabbar

With the rapid industrial growth and large-scale penetration
of electric vehicles (Chen et al., 2020; Pan et al., 2020), the global
energy demand has been drastically increased (Zeng et al., 2018;
Ahmad and Zhang, 2020). Besides most of the demand capacity

is fulfilled through fossil-fuel-based generation sources (Nguyen
et al., 2018; IEA, 2021a). Consequently, the increased use of
thermal power sources is the main contributor to the increase in
CO, emissions (Konda et al., 2018; Erding et al., 2017), which is
one of the major causes of global warming. In contrast, adopt-
ing the other meaningful ways to manage the increasing load
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and Abdussami, 2019; Tao et al., 2018; Zhou et al., 2016; Abdus-
sami and Gabbar, 2019), the consideration of power generation
through renewable energy (IEA, 2020) and hydrogen sources (IEA,
2021b; Yusaf et al., 2022) has been promoted to significantly
reduce greenhouse gas emissions (Algarni et al., 2021; Cheng
et al.,, 2020; Wang et al., 2020). Because renewable and hydro-
gen energy resources are becoming widely adopted as new and
alternative sources of energy to supply power to both residential
and commercial sectors.

On the other hand, over the past few years, the power grid has
been overburdened due to a steady increase in peak load demand
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Nomenclature

Indices

iel Index of load

ses Index of state

teT Index of time

Binary Variables

o Binary decision variable

Nst On/off state of storage system

Ve Startup state of storage system
of Initial state of storage system

a=20 Markov Process stop action

a= Markov Process start action

a; Load arrival request

Py Probability of close set

Ut Shutdown state of storage system

Other Parameters & Variables

Xf(t) Dynamic price signal for a renewable
integrated system ($/kWh)

@ed(t) Energy consumption cost based on dy-
namic price of renewable integrated
system over t ($/kWh)

B Normalization factor

E; Expected cost ($/kWh)

y Dynamic threshold

A(t) Electricity unit price over t ($/kWh)

ATE(E) Max. electricity unit price over t
($/kwWh)

Amin(e) Min. electricity unit price over t
($/kWh)

A?(t) Electricity price difference

N Natural number

i Probability of ith user/load

éed(t) Upper limit on cost with renewable
integrated dynamic price ($/kWh)

DE(L) Max. social welfare cost over t ($/kWh)

Y Upper limit on storage discharging
(kW)

v Upper limit on storage charging (kW)

ere(t) Upper limit on renewable energy

Ded(t) Energy consumption cost over t
($/kWh)

D(t) Total cost over t ($/kWh)

DE(L) Social welfare cost over t ($/kWh)

Y Storage unit discharging capacity

{1/ Renewable energy storage capacity

Vst Storage capacity (kW)

{1/ Surplus energy (kW)

¥ Charging capacity of storage unit
Yee(t — 1) Storage capacity during t — 1
T Time duration of a slot

and is more fragile due to the integration of electric vehicles (Yao
et al,, 2017; Qian et al., 2011). Such type of situation may pose a
profound threat to the power grid and create a great challenge to
energy retailers in constructing realistic electricity prices (Chen
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To Time slot at 0 time instant

Tif Finishing time of ith user

Tir Required duty cycle of ith load

Tis Starting time of ith user

ded(t) Energy consumption cost based on dy-
namic price over t ($/kWh)

éed(t) Lower limit on energy consumption cost
based on dynamic price of renewable
integrated system over t ($/kWh)

Y Lower limit on storage discharging (kW)

o+ Lower limit on storage charging (kW)

ere(t) Lower limit on renewable energy

QDT Discharging state

Ddt Discharging state

Ost Storage power loss (kW)

eg Grid energy source (kW)

€re Renewable energy source (kW)

est Storage energy source (kW)

ed;(t) Load demand over time t (kW/h)

and Chang, 2018; Markovic et al.,, 0000; Gao et al., 0000; Tan-
rioven et al., 0000; Ma et al., 2020; Mansor et al., 2019). Thus, in
the presence of distributed energy resources and variable energy
demand trends, it seems difficult to manage the demand with the
consideration of exogenous and endogenous variables. Moreover,
in the presence of dynamic energy consumption trends and the
intermittent nature of renewable energy sources due to weather
and habitual conditions, constant measures are inevitable to be
taken to maintain a balance between the energy demand and
supply. Consequently, the optimization and control strategies
without considering dynamic variables and the active participa-
tion of consumers seem ineffective. Therefore, the present work
focuses on energy demand management with the integration of
variable energy resources (VERs), active consumers, and time-
varying electricity pricing without heavily relying on grid energy.
The next section provides an overview of the motivation behind
this work along with its real contribution.

2. Relevant literature

The load scheduling & optimization topic has been well stud-
ied by different authors (Panda et al., 2022; Chowdhury et al.,
2018; Beaudin and Zareipour, 2015; Panda et al., 2021a; Premku-
mar et al., 2022; Panda et al., 2021b; Behera and Jain, 2021; Chen
et al,, 2019; Ahmadzadeh et al,, 2021; Wen et al., 2022; Hassan
et al.,, 2022; Tehrani et al., 2022; Kelepouris et al., 2022). Fur-
thermore, demand-side load scheduling & management (Panda
et al,, 2022; Beaudin and Zareipour, 2015; Panda et al., 2021a;
Premkumar et al., 2022; Panda et al., 2021b; Behera and Jain,
2021; Chen et al.,, 2019; Tehrani et al., 2022) and dynamic price-
based optimization algorithms (Wen et al.,, 2022; Hassan et al,,
2022; Mohandes et al., 2021; Al-Rubaye et al., 2018; Ferdous
et al,, 2020; Lu et al., 2021; Yang et al., 0000; Almahmoud et al.,
0000; Hung and Michailidis, 0000; Lu and Hong, 2019; Mishra
and Parida, 0000; Zhou et al., 0000) are well explained in dif-
ferent comprehensive surveys. Generally, these load scheduling
algorithms are developed based on price-based demand response
strategies (Huang et al., 0000; Wang et al., 0000b; Rasheed et al.,
2016) with the objectives of electricity cost minimization (Zeng
et al.,, 2018), peak-reduction (Nguyen et al., 2018; Golmohamadi
et al, 2019), and social-welfare maximization (Rasheed et al.,
2019; Asgher et al., 2018). Wen et al. (2022) have proposed a
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dynamic price-based demand response program to minimize the
cost and discomfort of end-users. The dynamic time warping clus-
tering method has been used to differentiate customers who are
willing to participate in load management programs offered by
utility service providers. Then game-theoretic approach is used to
establish equilibrium among service providers and customers to
maximize their profits. Hassan et al. (2022) have proposed a De-
mand Response enhancing Differential Pricing (DRDP) algorithm
to devise a dynamic pricing strategy along with smart meter data
privacy. To improve user comfort, Tehrani et al. (2022) have pre-
sented a dynamic electricity pricing algorithm for residential load
equipped with the energy storage system. This algorithm works
in both normal and emergency conditions, where the outage
patterns are modeled in different hours to provide the end-
users with uninterruptible power supply. The demand response
users that caused high and/or rebound peaks are only charged
high prices. Mohandes et al. (2021) have proposed a compensa-
tion scheme for load balancing within the defined time horizon.
Where a bi-interval-based piece-wise reward function is devised
to provide financial incentives to the customers. To further max-
imize the reward and social welfare of customers, the small
contracts have been designed & optimized, accordingly. Finally,
a MILP objective function is formulated and solved using the
decomposition technique. Al-Rubaye et al. (2018), has proposed
a new pricing mechanism considering real-time pricing (RTP)
and load demand. This work has significantly managed the elec-
tricity prices for users having a balanced load curve. However,
the customers with balanced load demand profiles are provided
with the pricing tariff under aggregated load demand. Perhaps,
it is relatively difficult for market retailers to provide a separate
tariff to each customer. Otherwise, it may pose a communication
overhead as massive data exchange could have occurred between
the users and utility. Another load scheduling scheme based on
dynamic pricing is devised to manage the trading-off between
the utility and user regarding profit maximization (Ferdous et al.,
2020). The work reported by Lu et al. (2021) has used a reinforce-
ment learning algorithm for a decision support system based on
an individual user to devise an optimal electricity pricing plan
for end-users. Markov decision theory is used to formulate op-
timization problems without considering transition probability.
This decision support system selects the best optimal pricing
plans based on the energy demand requirement of any user to
minimize the cost and dissatisfaction through different incentives
and rewards. Furthermore, the Q-learning algorithm is also used
to handle the possible uncertainties for improved performance
and results. Although this work has provided significant results
regarding user satisfaction, however, user satisfaction could be
affected if the energy demand varies after the selection of an
optimal pricing plan. Yang et al. (0000) have used a density-
based spatial clustering algorithm to devise energy consumption
patterns of customers based on the historical dataset. Then, these
load profiles & price levels are used to devise the retail prices to
minimize the energy consumption cost. The work of Almahmoud
et al. (0000) is devoted to matching supply-demand ratio & peak
load management through threshold-based pricing policy under a
dynamic environment. Initially, the price thresholds are assigned
in different time intervals to minimize the peak load demand.
Then, electricity prices are constructed to match supply-demand
capacity. Another load management mechanism with a dynamic
pricing model is proposed to devise customized prices consider-
ing load demand variations (Hung and Michailidis, 0000). As these
variations are being observed by the randomized load patterns,
therefore, the Monte Carlo algorithm has been used to flatten the
load patterns. In contrast, the excessive use of traditional energy
generation facilities may also raise climate concerns. Therefore,
to handle these types of problems, a load control mechanism to
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manage the energy resources without relying on thermal energy
generation facilities is required. For this purpose, the researchers
have already proposed an autonomous load scheduling mecha-
nism (Lu and Hong, 2019). Huang et al. (0000) have scheduled
the multi-energy load integrated with photovoltaic and storage
systems. Then a scenario-based stochastic non-convex mixed in-
teger nonlinear programming-based objective function has been
formulated to minimize the operational cost of the production
facility. Wang et al. (0000b), have proposed an integrated demand
response mechanism to minimize the operational cost of the
energy system. Where an interval method has been adopted to
overcome the uncertainty of integrated demand response pro-
grams. Results reveal that this approach is effective in saving
costs when compared to counterpart methods. Although, this
approach has produced satisfactory results in terms of cost re-
duction, however, a lack of uncertainty analysis mechanism has
made it infeasible in realistic scenarios.

Rezaei et al. (2022) have proposed a demand side integra-
tion based dynamic pricing mechanism for demand side load
management with the objective of profit maximization of utility.
Where the end-users agreed in participating load management
programs are offered dynamic prices to facilitate them in terms
of cost reduction. The optimization problem is formulated as
a stochastic optimization problem with mixed integer nonlin-
ear programming that involved a probabilistic representation of
uncertain generation and renewable energy resources. To cope
with the challenge of multi-residential demand response, Nguyen
et al. (2022) have proposed a holistic bidirectional demand-side
management approach for excess power sharing and improved
performance. Kumar et al. (2021) have proposed a stochastic
energy management framework to analyze the flexible load man-
agement strategy and price & incentive-based pricing programs.
The main objective is to ensure end-users affordability & relia-
bility in the presence of non-dispatchable energy resources. Ding
et al. (0000) have developed a real-time locational marginal pric-
ing scheme to identify the equilibrium points. Then, load demand
has been modeled as a linear function that is monotonously de-
creasing. However, it seems difficult to solve this function in the
presence of primary and/or dual variables. Therefore, the primal
problem has been further decomposed into a convex quadratic
sub-problem through duality theory. However, it is worth men-
tioning here that without modeling inherent uncertainties and
other control variables involved in finding the equilibrium points,
the expected results may deviate. It allows electricity operators
to purchase electric power following their defined producers to
further design the electricity tariffs based on the demand-supply
theory of economics. Here, the users do not allow to maxi-
mize their profit and/or comfort. However, the homogeneous &
non-homogeneous users are still required to be priced based on
load demand despite the pricing policy obtained from advanced
forecasting algorithms. The work demonstrated by Konda et al.
(2018) has integrated the PV and wind energy resources to fulfill
the demand capacity with reduced CO2 emissions. Furthermore,
it is shown by Rana et al. (2018) that load demand can also
be managed through the integration of renewable energy and
electrification transportation. However, regarding autonomous
energy management, the SG technology is being adopted to pro-
vide the opportunity to energy retailers, prosumers, and market
participants to manage the demand capacity through the consid-
eration of price-based mechanisms and customer engagement.
However, to best manage the load demand, there is a need
to engage the residential customers in active load management
programs.
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2.1. Motivation and contributions

Energy generation and management through active partici-
pation of prosumers are the ongoing challenges being faced by
today’s power sector. This is due to the ever-increasing world
population and the rapid advancements in information and com-
munication technology (Outlook, 2014). In contrast, the capability
of distributed generating and transmission of power is increasing
at a much slower pace. This is due to the limits on power generat-
ing units including hydro-power and thermal. Whereas, thermal
power generation is not very popular due to carbon dioxide
emissions (Annual Energy Outlook, 2021) and high oil prices in
the World. Therefore, the development of a load management
mechanism (Al-jabery et al., 2017) with efficient utilization of
VERs is necessary for the ongoing collective prosperity and qual-
ity of life (Park et al., 0000). This has to lead to the consideration
of activities or programs to promote the reduction in energy
consumption or/fand management through active participation.
The former considers efficient building materials (Laustsen, 2008)
and smart loads (NEC, 2021), while the latter focused on the
development of efficient load scheduling and optimization tech-
niques. The demand response technologies (Wang et al., 0000a,c;
Nguyen et al., 2020; Chen et al., 2013) bring the need for a
dynamic framework for addressing the financial settlement in the
electricity market, where the temporal components are neces-
sary due to the intermittent nature of renewable energy sources
due to weather conditions and EVs due to dynamic user behav-
iors. The real-time electricity price (Mishra and Parida, 0000;
Zhou et al., 0000) can be viewed as a state of this dynamic
framework. This is because it determines financial transactions
of control variables and various market entities, that can affect
consumption. Thus, interrelation among market clearing pricing,
pricing mechanisms, and demand are grouped under the rubric
of dynamic control necessitating optimization-based solutions.
The optimization-based autonomous load scheduling and energy
management mechanism is needed to cope with one or more of
the below-mentioned challenges. The energy management sys-
tems confront some practical difficulties due to uncertainties
regarding renewable energy resources (Athari and Wang, 2016;
Nazemi et al.,, 0000; Ben Rached et al., 2017) and charging be-
haviors of EVs in residential and parking lots. Since the existing
load scheduling schemes (Rana et al., 2018; Chen et al., 2020)
are based on residential demand response with the integration of
VER and storage systems, particularity is not highly suitable (Yao
et al,, 2017; Qian et al., 2011; Chen and Chang, 2018; Markovic
et al., 0000; Gao et al., 0000; Tanriéven et al., 0000; Ma et al.,
2020; Mansor et al.,, 2019). This is due to real-time changes in
market-clearing prices, user satisfaction due to these variations,
algorithmic scheduling errors due to dynamic variations in power
generation and consumption trends, and the impact of the in-
tegration of VER and storage units (Wei et al., 2016; Muhanji
et al., 2018), capacity scheduling, and optimizing the energy re-
serve units, particularly. Therefore, to handle the aforementioned
uncertainties and limitations regarding the load scheduling per-
spective, this work adopts a slightly different approach to load
management considering the underlying uncertainties (i.e., elec-
tricity pricing, user behavior, demand variation, uncertainties in
renewable and storage capacity). The main contributions are:

1. A bi-level load scheduling and optimization mechanism
with the objective of energy consumption and scheduling
delay cost minimization integrated with renewable energy
and storage systems.

2. Mathematical models for renewable energy, storage sys-
tem, electricity price & cost, scheduling delay and stopping
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criteria are developed to better analyze the impact of ex-
ogenous and endogenous variables on the scheduling pro-
cess. Furthermore, advanced machine learning algorithms
(i.e., Artificial Neural Network (ANN), Nearest Neighbors
(NN), Gaussian process) are used to predict the real-time
load profiles to obtain accurate scheduling results.

3. The first-level optimization objective function is formu-
lated based on OSLR following the predefined dynamic
stopping criteria to find the optimal time slots to sched-
ule the loads with reduced cost and delay. Where the
renewable energy and storage units act as first-choice dur-
ing the scheduling process to further minimize the re-
bound peaks. Furthermore, the electricity price signal is
modeled as a random process instead of the day-ahead
real-time pricing (DA-RTP) signal. The first-level objective
function is then solved using mathematical programming
with branch-and-cut & branch-and-bound algorithms and
a CPLEX solver.

4. The load scheduling problem is further modeled to in-
troduce the dynamic electricity price signal. Then the bi-
objective cost function is modeled as a stochastic optimiza-
tion problem since the RTP, load demand and scheduling
process are highly dynamic. Therefore, the heuristic-based
GA is used to solve the objective function to ensure the
minimization of cost and delay with the global optimum
solution.

5. Furthermore, unlike (Yi et al., 2011), to prioritize the cus-
tomers, different priorities are introduced and incorporated
into the optimization program in such a way that the users
have the opportunity to modify their priorities based on the
load demand requirements.

3. Modeling methodology

By keeping in mind the aforementioned challenges and open
research issues identified based on the literature review, this
work investigates the potential of OSR based on an opportunistic
algorithm (Clarke and Reed, 1990; Jacka et al., 2007; Iwayemi
etal,, 2011; Yi et al,, 2011) and introduces a novel mechanism for
load management modeling. This work is modeled in four steps:
(i) in the first step, the scheduling probabilities for all loads are
obtained, which later on are used to find the optimal scheduling
patterns, (ii) the photovoltaic (PV) based renewable energy and
storage models are designed with stochastic control parameters,
(iii) energy demand consumption and scheduling delay param-
eters are modeled and cost minimization objective function is
formulated, and (iv) the dynamic pricing signal based on the first
step scheduling is obtained to distribute the cost among all users.
Since the dynamic pricing signal is obtained based on the load,
and optimal stopping price, therefore, each user obtained the cost
based on load and scheduling patterns without directly relying
on the price signal that is obtained from the retailer. Regarding
implementation, different optimization algorithms are first inves-
tigated to select the best appropriate. Then, based on the relevant
literature about optimization and control, this work has used
linear programming (LP) for a cost minimization problem, and
extended mathematical programming (EMP), and mixed-integer
programming (MIP) algorithms are used to solve the cost and
social welfare objective function(s), respectively.

4. Problem formulation
The proposed system model is designed to schedule the load

under uncertain parameters and variable energy resources. Where
the model contains renewable, storage, load, price, and delay
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models. The load demand ed;(t) data is obtained from Aus-
Grid (Solar, 2022), while the electricity price signal A is assumed
as an independent and identically distributed process that is
uniformly distributed over t € T. Where, the time duration of
ith load is denoted by 7;. Let ed;(t) of ith user such thati € I
over time t can be fulfilled through grid e,(t), renewable e.(t)
and storage e (t) resources, respectively. Where, the surplus en-
ergy {ed(t) — (eg(t) + ere(t) + ex(t))} can be directly integrated
in the load management system or stored in backup system.
Furthermore, the ey is subject to the upper and lower limits
during charging and discharging. Let « be the binary decision
variable used to denote ON/OFF states of connected loads and
a;i(t) denotes the arrival requests of ith over time t. We further
assume that each load starts working at the beginning of each
time slot 7;; and finishes its working/duty-cycle 7;; within one
or more time slots depending on the energy demand and the
duty cycle requirements. However, the time taken by any process
to complete the load demand requirements does not exceed the
total time ;5 — 7;y < T. The next subsections provide the details
of renewable, storage, load, price, and delay models, respectively.

4.1. Renewable energy & storage model

This work considers renewable and/or storage components
as random variables whose values are not known in advance.
It means, that the control unit does not know the exact avail-
able amount, and thus has to manage the demand by finding
the stopping policies, which are discussed in the next sections.
Furthermore, the algorithm considers renewable and storage sys-
tems as the first choice to model the load demand. Where the
surplus energy is then stored in the backup storage system to
use in later hours when the demand and electricity price are
relatively higher. Let e.(t) denote the net amount of renewable
energy which can be obtained from the solar photo-voltaic source
over the time t. Unlike realistic renewable energy generation
pattern, this work assumes a non-zero energy at any time t;
ere(t) > 0. To better analyze the impact of the proposed load
scheduling mechanism, real-time prediction algorithms are used
to predict e, (t) over the 24 h time interval.

ere—Zt 1 ere } vt (])

ere(t) < ere(t) < ep(t) (2)

Eq. (1) shows the predicted solar power is within the min-
imum and maximum limits. Where, e.(t) and e.(t) represent
upper and lower limits on renewable energy capacity. Eq. (2)
denotes lower and upper limits on the renewable energy capacity.
Similarly, the energy storage model is considered as an infinite
capacity and is used as a primary source of energy during the
scheduling process. Let ed;(t) denotes the energy demand of i
loads over time t, that must be fulfilled through renewable e(t),
storage e (t) and grid energy eg(t) sources, respectively. The
surplus energy ¥ (t) can be either used and stored in the storage
units written as Eq. (3):

WY (8 Z ed

t=1

(£) + ere(t) + e (1))}, Vt (3)

The energy storage system y(t) is subject to the following
limits:

PV () < U3 (1) < @a Wit (£). VE (4)
Par g (t) < Ygp(t) < @a(t)g (). Vit (5)
Nse(t) = (Vse(t) — use(t)) + mse(t — 1), VL. (6)
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nty=0 vt. (7)

where, v, u, n, ¢ and ¢ denote startup, shutdown, on/off, initial
and charging states of energy storage systems. Charging and
discharging capacities during charging state ¢ (t) of the energy
storage system is denoted by . & discharging Y- Where,
Eq. (4) denotes the minimum and maximum limits on the en-
ergy storage system during the charging state. Similarly, Eq. (5)
denotes the minimum and maximum limits on the energy storage
system during the discharging state. Variables v, & ¥, and
vl & ¥4 denote upper and lower limits on charging & discharg-

ing capacity, respectively. Egs. (6) and (7) denote switching states
and initial state y;}(t) of the energy storage system.

Yae(t) < Ygf (£) < Par() (8)
Yse(t) < Ygg (£) < Pe() 9)

Egs. (8) and (9) denote lower and upper limits on storage ca-
pacity. Here, the lower capacity is assumed zero when system
starts operating, while the storage capacity is kept infinite. In
other words, the zero means the lower capacity of the energy
storage system must be non-negative (Y (t) > 0), while the
upper/maximum capacity of the storage system is considered in-
finite during implementation. However, it is also understood that
the maximum storage capacity could be equal to the maximum
of renewable energy capacity. Furthermore, the upper limit does
not fulfill as the remaining surplus energy can only be stored.

Yae(t) = Yse(t — 1)+ ()Wt (€) + Y (1)) (10)

_ {if:wa(t) =0yi(t)=0, &@u(t)=0 Y (t)=0
ifipa(t) =1 yg(t) =1, &eq(t)=1y (t)=1

The energy storage state equation considering the loss factor
os(t) is represented as Eq. (10). However, the proposed storage
system is assumed ideal with no loss during the charging or
discharging. Eq. (11) denotes the charging and discharging states,
respectively.

(11)

4.2. Load & cost model

The energy ed(t) demand fulfilled through grid, renewable and
storage sources can be written as Eq. (12):

T

ed(t) =) (eg(t) + er(t) + ex(1)) . (12)

t=1

Energy ed;(t) consumed by all the loads i when the load demand
request a;(t) arrived in time t is represented as Eq. (13).

t)—ZZ{ed

t=1 i=1

x ai(t) x ai(t)}, Vi, t (13)

where, «;(t) is a binary variable [0, 1] of ith load during t that
decides whether the optimal stopping criteria are fulfilled or not,
and a; 4(t) denotes arrival time of load when stopping time exists.
Let &(t) be the total energy consumption cost of i over t, which
is equal to the sum of two types of costs as written Eq. (14):

@(t) = ded(t) + PE(L), Ve (14)

In Eq. (14), ®ed(t) denotes the energy consumption cost, while
@E&(t) denotes the social welfare/scheduling delay cost. The en-
ergy consumption cost of i load is denoted as Eq. (15):

I

Ped(t Z Z {edi(t)

t=1 i=1

(0)}, Vi, t (15)
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where, A(t) denotes electricity price signal obtained from a day-
ahead electricity market. The energy consumption cost ®ed;(t)
excluding renewable and storage system is calculated as Eq. (16).

Ded(t Z Z (ed;(t

t=1 i=1

— ere(t) + et (1)) x A(L)}, Vi, t (16)

Since, Eq. (16) is used to calculate electricity cost based on
real-time electricity pricing signal A(t). However, customer sat-
isfaction is generally related to the benefits in terms of bill
reduction, load scheduling flexibility, or an uninterruptible supply
of energy. To achieve this objective, this work has integrated
the dynamic electricity pricing (Rasheed and R-Moreno, 2022)
into OSR algorithm to provide the customers with demand-aware
electricity prices.

4.3. Scheduling delay model

This work has modeled the scheduling delay based on cus-
tomer priority, load demand requirements, electricity price in-
formation, and other uncertainties related to the algorithm. The
@E&(t) can be zero if the optimal stopping time for all loads
remains the same as defined by users. Otherwise, its value will
be greater than zero and less than @&(t). Let @&(t) depend on
the electricity cost at stopping time and is therefore modeled
to analyze the scheduling behavior of the proposed mechanism.
However, before calculating @&;(t), the scheduling delay factor &;
is introduced Eq. (17).

E(6) = {m(t) X Ti(t) x ("(”_T)} Vit (17)

T— Tir

where, u; denotes the probability of ith load, t; denotes the time
duration required by ith load, 7;s denotes the scheduled duty
cycle and t;, elucidates the required duty cycle, respectively.
Eq. (18) calculates the scheduling delay of each load that is not
serviced. The cost associated with Eq. (17) is denoted as:

D&(t) = {(edi(t) x A(t)) x &(t)}, Vi, t (18)

where, Eq. (18) shows the delay cost of ith load that is unable to
meet the stopping criteria in T — 1. If the cost ®&;(t) at t is less
than the cost at state t — 1, then the social welfare cost will be
reduced and vice versa. Furthermore, ®&;(t) and 7; , are bounded
by maximum time limit t and working cycle requirements are
expressed though (19) and (20), respectively.

0<T—r1, <T,Vit (19)
T <T;<T—-1 (20)
4.4. Dynamic price & cost model

In the first module, the cost and delay minimization objective
function is solved using MIP. Then the obtained results are used
as input to the second optimization module where the GA is used
to find the nondiscriminatory electricity price signals for each
user. For this purpose, the scheduled load demand and optimal
stopping price of each user are required to calculate the dynamic
price. To calculate a dynamic electricity price signal for each
user, it is first required to calculate the electricity price difference
of each user based on load consumption variation. In this way,
the new electricity cost based on the dynamic price signal is
calculated using Eq. (15) and is expressed as Eq. (21):

T I
= [ed()

t=1 i=1

x A0}, i ¢ (21)
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where, Eq. (21) denotes energy consumption cost based on dy-
namic price signal, kf’(t) denotes the dynamic electricity price
signal, which is calculated based on load demand, scheduling
capacity, and market price variation as Eq. (22);

0=

t=1 i=1

where, Eq. (22) denotes the different (min/max) in electricity
price of each user i based on load consumption in compari-
son with other users. In other words, it is unlike A(t) which
is calculated based on an aggregated load demand. Here, the
initial price and load consumption profiles of each user i are
obtained from the OSR implementation (optimal stopping price
based on A) using the one-step lookahead rule (OSLR) discussed
next. Similarly, the cost based on renewable energy integration
can also be calculated. However, it is first required to calculate
the dynamic price signal kf(t) for a renewable integrated system
using Eq. (22).

T
ZZLdZ [edi(£) — (ere(£) + exe(£)) X At )1}, (23)

t=1 i=1

(edi(t) x ())} (22)

Now, the cost associated with Eq. (23) is calculated as Eq. (24):

i
ed(t Z Z [(ed (t) — ere(t) + es(t)) x i?(f)] Vit (24)

<ped()5q’> ()<<Ded() i, t (25)
0 < PE(L) < PE(L), Vit (26)
dedi(t) > 0, Vi, t (27)

where, Eq. (24) is used to calculate the energy consumption cost
based on optimal stopping price & Af(t) and load consumption
patterns i, Egs. (25) & (26) denote lower and upper limits on the
energy consumption and social welfare cost and Eq. (27) shows
the cost remains non-zero if Eq,(t) > 0 during operation time T.

I

©=2"3 [t

t=1 i=1
Vi, t,s

— enelt) + eq(t)) + (&(t) x A1)} (28)

The total cost is calculated in Eq. (28) that can be obtained by
adding energy consumption cost Eq. (24) and delay cost Eq. (18).

4.5. OSR working

Since OSR is a Markov Decision Process (MDP) that involved
two actions; a = 0 means stop and a = 1 means continue. There-
fore, two types of costs based on stopping criteria are involved
Eq. (29).

ot0= 0

if a = 0, (stopping), Eq. (21)

29
if a = 1, (continuation), Eq. (28) (29)

Fig. 1 explains the OSR process in finding the optimal time slots
based on given pu, a, y and A, respectively. It is clear that upon ser-
vice arrival request a;(t), the process stops (a = 0) Eq. (32) only
when the optimal time slots are obtained based on y, Egs. (16),
(29). In contrast, (a = 1) means the arrival request does not
fulfill the stopping criteria y and is therefore unable to provide
the scheduling pattern. The arrival request(s) will remain in the
waiting queue until the next feasible time slot. The process con-
tinues until the next feasible time slot is found when the stopping
criteria are fulfilled. In this case, the control unit calculates the
waiting time and the tariff of the time slots when the process

14039



M.B. Rasheed, M.D. R-Moreno and K.A.A. Gamage

a=1,x€ S a=1,x€ S
N
ay(t)
-~ as(t)
— () a=0 a=0
: P, =0 Pry=0
a=1 a=1
) l l
a=1 =
/ \ a=1 a=1

Energy Reports 8 (2022) 14034-14047

a=1,x€ S

a=1,x €S
To control
.. unt
a=0, a=0
Pey=0 Pry=0 o
a=1

a=1 (
/
a=1
N

Fig. 1. Activity diagram of OSR algorithm in finding stopping time slots.

stops. Furthermore to balance power supply and demand, the
proposed algorithm keeps checking the remaining time duration
and the required duty cycles. Otherwise, the obtained solution
would be infeasible. The OSR-based scheduling process can be
further explained through the Bellman rules. Let the time be
finite, then the cost in terms of the Bellman equation is expressed
as:

®(t) = {min : (ed(t) — e(t) + ext(t)) x A%, D(t) + Ee (Ps1(1)(X)} , ¥t
(30)

where, Eq. (30) refers to the instantaneous cost, and &(t — 1) is
the cost during t — 1 such that t € N, if the process continues.
However, there is no cost involved if the process stops at the
current state s. For example, if min : @;(t) is found, then ®;(ty) =
{edi(t) — ere(t) + ex(t) x A!} means the process has to stop if
entered to the stopping state s € S.

Definition 1. In one step lookahead rule (OSLR), the process stops
if the state s € S. Where S can be defined as:

S = {t 1 (ed(t) — epe(t) + exe(t) x A7 < B(t) + Eeds (X)), Ve, 5
(31)

Eq. (31) refers to the set of stopping states s € S, where the
process stops if the optimal cost @;s(t) < &/ (t) is found.

Otherwise, the process will continue to find the next possible
state(s) with reduced cost.

Definition 2. Let assume if the stopping set is closed S € &, and
the optimal solution is found within the closed set, the process
will stop without moving to the next states. It is expressed as:

Pyy=0,V¥s€S,y¢S. (32)

Eq. (32) shows the probability of moving to the next possible state
is zero once the state y is entered in set S. Otherwise, the process
continues to find the next states with optimal solution. Then for
the given closed set S, OSLR states:

Bis—1)(t) = {(ed(t) — ere(t) + ex(t) x AU(O)} , Vs, ¢ (33)
Furthermore, the cost @)(t) at s must remains same as Eq. (33).
Similarly, based on Eq. (33), if s € S is closed then X € S, and the
cost @s_1yx)(t) will also be equal to Eq. (34):
By(t) = {(ed(t) — ere(t) + exe(6)) x 2°(), (1)
+E ((ed(t) — ere(t) + ex(t)) x A%(t), D(t)(X))} . Ve, s
(34)

4.5.1. Stopping criteria
Since the proposed cost minimization optimization problem is
a finite time-stopping problem, therefore the set of states s € S

given by the OSLR is generally closed and called an “optimal
policy”. However, if the solution is found just after s = 1, the
OSLR is exactly an optimal stopping policy for one step only. In
contrast, if the solution is not found exactly after s = 1, then it
is better to continue for s — 1. Furthermore, while the X is an
independent and identically distributed process that is uniformly
distributed over t. Therefore, the optimal stopping time ¢ is that
when the minimum A(t) < y(t):

1 )
vi(t) = \/,3 (edi(t)()»’"“" — AMIN) X g x Ti),‘v’t, s (35)

Eq. (35) reveals that this policy is based on a pure threshold,
which means that if A;(t) < y(t), then this time is known as
the stopping time. Otherwise, the process continues until the
stopping time is found. Eq. (35) gives the stopping threshold
when the electricity price is less than y;(t). The variable 8 = 2
is used to normalize the Eq. (35). However, the value of 8 can be
adjusted based on the decision requirements. Moreover, the high
value of 8 may pose an extra delay in the decision process due to
more difference between threshold and cost values. If an optimal
time is not found and the process continues to the next time slots,
the & would be added to the energy consumption cost. Finally, the
cost minimization objective function is written as Eq. (36):

min ) " " oi(t), (36)

subject to: Egs. (17), (19), (20), (22), (23), (26), (25), (27), (35).

Based (36), the power allocation pattern for each load i over
time t are first obtained. However, if any load is postponed due
to higher electricity price A and probability w, the extra costs can
be added. Therefore, to reduce the &(t), the proposed algorithm
continually checks the duty cycle ; of each load i to meet the load
demand without violating duty cycles 7, requirements. Further-
more, if ;; contains higher values and min : @(t) is not obtained
due to higher A. Then the algorithm allocates the remaining load
with feasible time before the completion time .

5. Proposed algorithms

This work has used different tools to achieve the desired
objectives as shown in Fig. 2. Firstly, MATHEMATICA is used to
obtain the real-time predictions and the results are provided
to MATLAB and GAMS. Where the GAMS is good in handling
large-scale mathematical optimization and industrial problems
with the ability to provide results with significant accuracy and
conference rate. Secondly, the OSR is used to find the optimal
time slots to schedule the load demand with the objective of cost
and discomfort reduction. The main objective of considering the
OSR theory (Clarke and Reed, 1990; Jacka et al., 2007) is due to
the problem of choosing an optimal time to make a decision or
action based on random variables to minimize an expected cost
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Fig. 3. Flowchart of the proposed bi-level load scheduling algorithm, (Part 1/level 1) OSR is used to schedule the load by finding the optimal time slots, and (Part
2/level 2) GA is used to further find and distribute the dynamic pricing to the consumers.
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Algorithm 1 OSR Based Scheduling Algorithm.

1: Initialize t=0.
2: Initialize the scheduling cycle of loads.
3: Update current status of load over time t.
4: If load is placed in ready queue, the EMC checks e (t) and
Voe(t).

: If ee(t) > edi(t) || ¥se(t) > edi(t); turn ON load i.

6: If ero(t) < edi(t) || ¥s(t) < edi(t); then find y(t) (Eq. (35)) for
load i.

7: If edi(t) < (eg(t) + er(t) + ex(t)); turn on load i.

8: If edi(t) > (egt) + er(t) + ex(t)); keep the load in waiting

queue until the problem Eq. (36) is solved.

9: if min. of Eq. (36) found, save the results. Otherwise, move to

step-4.

0: if eq(t) > edi(t) + ¥ (t); save surplus energy.

11: t= n+1, move back to step 2 for n=24.

12: Remarks: The algorithm describes the complete steps of the
proposed load management and scheduling phenomenon. Be-
fore sharing the optimal time slots with loads, all loads must
have prior probabilities, demand profiles, and intended time
slots. Then based on this information, the scheduling algo-
rithm finds the optimal time slots and allocates the power
to all the loads placed in the ready queue. The loads can be
placed in a waiting queue if the demand exceeds a certain
predefined threshold. Then the combined, load consumption
and scheduling are calculated using Eq. (36). It is also worth
noting here that the scheduling delay is modeled to show
customers the waiting time. However, when this particular
load can get the scheduling horizon, the electricity unit price
will remain the same during the given time frame. Unlike
previous works (Gao et al., 0000; [wayemi et al., 2011; Yiet al,,
2011; Chen et al., 2020), there is no scheduling cost associated
with any load except the delay profiles and electricity unit
price at that particular time. In contrast, if the customers want
to minimize the probability of high delay, the value of u can
be set accordingly. But in all cases, the stopping policy is
obtained to minimize the cost without bearing an extra delay.
Otherwise, the proposed algorithm remains unaffected.

w

—_

or maximize a payoff. Because the problem is to choose a time
slot to stop to minimize the expected cost or to maximize the
reward based on randomized decision variables or processes. It
means that you have to choose a stopping probability depending
on the given observations.

The optimal time slots, stopping price, and schedule load
patterns are then used as input parameters to the GA (Part 2, 3) to
generate the dynamic electricity price signal for each customer.
Where the pricing signal remains fixed for the scheduling period
(1 h). As discussed above, the OSR is a pure threshold policy
and can provide the best results if supported by mathematical
models. In contrast, the electricity price is generally calculated
based on the aggregated load demand over a certain period.
However, the load consumption patterns are changing over dis-
crete time, therefore, the heuristic-based GA is used to find the
optimal pricing policies. Fig. 3 shows the implementation flow
of the proposed algorithms. Part 1 represents the OSR-based
implementation in finding the optimal schedules and respective
costs. While part 2 describes the steps in finding the dynamic
pricing policies subject to constraints and limits. Furthermore, to
ensure the optimality condition, the final results are compared
with the total cost of the load. The zero difference between the
scheduled and unscheduled costs reflects that the optimal results
are deceived.

Energy Reports 8 (2022) 14034-14047

6. Simulation setup

For simulations, the data set is obtained from solar home
electricity, Ausgrid (Solar, 2021) and built-in algorithms are used
for real-time prediction using MATHEMATICA (WOLFRAM MATH-
EMATICA, 2022). Fig. 2 shows the forecasted profiles obtained
from MATHEMATICA that are used as input to the GAMS tool
for load scheduling optimization. Because the GAMS is a high-
level platform for modeling large-scale industrial problems using
optimization & mathematical programming. Its built-in language
compiler consists of a variety of solvers such as CPLEX, BORON,
CONOPT, LINDO, BORON, etc. Therefore, the modeling language
used in GAMS allows modelers to translate real-world optimiza-
tion problems into machine-readable code. Then GAMS language
compiler translates this code into a format that solvers can easily
understand. Furthermore, this architecture is highly flexible such
that it allows users to change the solvers without modifying the
base model. Finally, MATLAB is used for data visualization and
data handling.

6.1. Results and discussion

Fig. 4 shows the prediction results using 1D numerical data
with confidence interval. In this work, we have used the Gaus-
sian process, linear regression (LR), NN, and ANN to analyze the
performance in terms of fast convergence. Results reveal that
the Gaussian process and nearest neighbors efficiently handle
non-linearities in data. Therefore, the Gaussian method has pro-
duced smooth predictors, while the NN has produced non-smooth
predictors. Table 1 gives the numerical performance comparison
of different machine learning algorithms regarding performance
metrics. It can be observed the NN has comparatively fast training
time, utilized less memory, and low evaluation time of a single
example. However, it has a high batch evaluation time due to
the evaluation of the nearest branches. Whereas, the Gaussian
process has a low evaluation speed, and high single evaluation
time. Finally, the ANN shows high training time, consumes more
memory, and has an almost negligible loss. In conclusion, the
neural network can give the best results, however, based on high
computational complexity and memory.

Fig. 5 shows the electricity price variation factor A4(t), Eq. (22)
based on load demand Eq. (13) and stopping price Eq. (23).
This variation well described that the dynamic electricity price
for each load i is changing regarding variation in load demand,
market-based electricity price signal, and the overall variation
in per hour load demand. However, the proposed optimization
module does not alter the original electricity price signal A(t) in
Eq. (22). Fig. 6 shows the proposed electricity price signal which
is dynamically changed over t for each i reflecting the price varia-
tion. Unlike DA-RTP which is rather static over 24 h, the proposed
price signal varies based on real-time load demand consumption.
Consequently, each user/load has been scheduled to reduce the
total cost and individual cost of each user specifically. Simulation
results also show that the proposed algorithm schedule the load
without violating duty cycle requirements to minimize the cost
and discomfort. Furthermore, the load is also scheduled in such a
way to reduce the overall cost without compromising end-user
comfort in terms of power supply and scheduling delays due
to electricity price variation. In other words, the load demand
and supply are balanced. Besides, the scheduled time slots are
obtained from the proposed mechanism based on the duty cycle
and social welfare requirements. Furthermore, as it is difficult
to manage all the load with customer priority, therefore, the
proposed work has introduced a priority to model a delay/social
welfare cost to better manage the load demand. In contrast, the
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Fig. 4. A comparison of real-time prediction of variable energy resource (Solar, 2022) using ML algorithms over the period of 24 h.
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Fig. 6. A new dynamic electricity price signal for each load or user based on the

Table 1

second step optimization (GA).

A performance comparison of different machine learning algorithms.

Predictor information

Gaussian

Nearest Neighbors Neural Networks

Data type

Standard deviation
Single evaluation time
Batch evaluation speed

Numerical

0.314 (+0.11)
5.6 ms/example
21.6 example/ms

Loss 1.40 (£1.9)
Model memory 130 kB
Training example used 17
Training time 758 ms

Numerical

0.396 (£0.13)
3.14 ms/example
62.5 example/ms
0.551 (40.56)

Numerical

0.251 (+0.14)
3.87 ms/example
15.2 example/ms
0.136 (+0.57)

113 kB 220 kB
17 17
302 ms 442 s

load can still be managed with the expensive generation which
can add more burden on end-users regarding electricity cost.
Fig. 7a shows the comparison of DA-RTP and RTP signals.
Where the DA-RTP is generally obtained from NYISO which is
known in advance. However, the proposed work has rather used
the RTP which is uniformly distributed over the maximum and
minimum limits which are [4.971.01] $/KWh. This work has

considered the RTP signal with uncertainties to develop a re-
alistic load scheduling algorithm using OSR. Fig. 7b shows the
relationship between threshold Eq. (35) and energy consumption
which reflects that y is inversely proportional to the energy
demand. Where, the value of y decreases with the increase in
load demand, that will eventually affect the decision process.
Fig. 7c shows the relationship between the threshold y and
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Fig. 9. A comparison of energy consumption and cost profiles of different loads over the period of 24 h.

probability/time-factor p which explains the threshold values y
increases if u increases and vice versa. In other words, Fig. 7a,b
shows that stopping criteria in OSR depends on Eq. (35).

Fig. 8 shows the delay cost profiles over the time t. It is
observed that the delay cost also dynamically changes with the
probabilities w«, energy demand ed;(t), Eq. (13) and arrival rate
«;(t), Eq. (17), respectively. Furthermore, Fig. 8c,d show different
delay costs with the same probability. Actually, the difference is
reflected due to dynamic behavior in electricity cost (RTP), the
dynamic cost (Part 2 in Fig. 3), and optimal stopping time based
on OSR (Part 1 in Fig. 3) where the cost and scheduling delay are
found minimum and other endogenous control variables in OSR
and GA, respectively. In response, the delay cost will always be
different in each time slot (t) reflecting the dynamically changing
behavior of different control parameters. In contrast, if the delay
cost and other profiles remain fixed for the given interval (t),
means the algorithms have hard constraints and are not updated

in regard to other control variables. Fig. 9 shows the cost profiles
of different loads i over time t. Generally, these types of cost
profiles represent more realistic optimization behavior despite
those observed in realistic scheduling. During implementation,
the power obtained from the grid source is reduced when a
sufficient amount of renewable & storage capacity is available.
Because the renewable & storage units act as the first choice to
reduce the overall cost and carbon footprints. For example during
(t;7 — 12) in Fig. 9a, the sufficient amount of storage capacity
is available due to a demand reduction. This is generally due to
the higher electricity price during these time slots. Therefore, sur-
plus energy can be stored and utilized when either the demand
capacity is increased or the electricity price is increased.
Similarly, Fig. 9b shows the scheduled and unscheduled load
profiles with the integration of storage units. It can be seen that
OSR had efficiently managed the load demand without heavily
relying on grid energy source eg(t). Fig. 9c shows the non-smooth
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Fig. 10. A comparison of energy consumption and cost profiles using LP, MIP, and EMP techniques for 24 h. In Eq. (16), if we impose lower and upper limits Egs. (25)
& (26) during scheduling process, the overall cost is reduced. However, the @; is compromised, that depends on the value of @;(t)(d;(t)). This work considers the

dynamic value of ®;(t)(d;(t)) to better schedule the load in cost-efficient time sl
as load demand is also dynamic.

cost profile. The cost seems relatively higher during the high
demand period or when the renewable & storage capacity is
insufficient to fulfill the total demand. On the other hand, the neg-
ative cost profile reflects that the surplus energy is stored or sold
back to the utility to reduce the overall cost. Furthermore, the
irregular and non-smooth cost profiles show noticeable variations
due to dynamically changed control variables (see Eqgs. (13), (17),
(22), (35)). Because, unlike DA-RTP, this work relies on the real-
time values parameters. Besides most of the previous works on
load schedules are developed based on day-ahead pricing infor-
mation. To further analyze the algorithmic behavior in handling
uncertain variables, this work implements different algorithms
such as LP, MIP, and EMP as shown in Fig. 10. It can be seen
that LP and EMP have generated almost the same cost profiles.
However, the cost profiles are different in MIP technique. This is
because, without any quadratic constraints, the objective function
is generally solved using the classic branch-and-bound algorithm.

7. Conclusion

The load scheduling problems integrated with renewable en-
ergy and storage systems have involved different uncertain con-
trol variables and therefore become quite challenging to design.
To overcome this problem, the proposed work used a bi-level
load demand scheduling mechanism in conjunction with renew-
able and storage systems. Initially, the mathematical models for
the load, scheduling delay, stopping criteria, electricity price,
renewable energy, and storage system were developed. Further-
more, the load demand data obtained from Ausgrid solar home
is forecasted using real-time ML algorithms (i.e., ANN, NN, &
Gaussian Process). Then the first level optimization problems are
formulated with the objective of energy consumption cost and
scheduling delay minimization. Where the bi-objective optimiza-
tion function is solved using mathematical programming (i.e., LP,
EMP, and MIP) with branch-and-cut and branch-and-bound al-
gorithms. Then the first-level load scheduling problem is further
modified to integrate the dynamic electricity pricing mechanism
with the objective of cost minimization of each customer through
an individualized pricing signal. Since the DA-RTP signal is highly
uncertain and depends on the load demand consumption and
other endogenous & exogenous control variables. Therefore, the
second-level scheduling problem is formulated as a stochastic
optimization problem which is solved using GA. As a result, each
customer is provided with a separate electricity pricing signal
based on his load demand without violating retailer or other
customers’ objectives.

ots. Otherwise, the static value of @;(t)(d;(t)) may lead to inefficient load distribution
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