109,716 research outputs found

    Dynamic asset allocation with uncertain jump risks : a pathwise optimization approach

    Get PDF
    This paper studies the dynamic portfolio choice problem with ambiguous jump risks in a multi-dimensional jump-diffusion framework. We formulate a continuous-time model of incomplete market with uncertain jumps. We develop an efficient pathwise optimization procedure based on the martingale methods and minimax results to obtain closed-form solutions for the indirect utility function and the probability of the worst scenario. We then introduce an orthogonal decomposition method for the multi-dimensional problem to derive the optimal portfolio strategy explicitly under ambiguity aversion to jump risks. Finally, we calibrate our model to real market data drawn from ten international indices and illustrate our results by numerical examples. The certainty equivalent losses affirm the importance of jump uncertainty in optimal portfolio choice

    Essays on risk and uncertainty in financial decision making: Bayesian inference of multi-factor affine term structure models and dynamic optimal portfolio choices for robust preferences

    Full text link
    Thesis (Ph.D.)--Boston UniversityThis thesis studies model inference about risk and decision making under model uncertainty in two specific settings. The first part of the thesis develops a Bayesian Markov Chain Monte Carlo (MCMC) estimation method for multi-factor affine term structure models. Affine term structure models are popular because they provide closed-form solutions for the valuation of fixed income securities. Efficient estimation methods for parameters of these models, however, are not readily available. The MCMC algorithms developed provide more accurate estimates, compared with alternative estimation methods. The superior performance of the MCMC algorithms is first documented in a simulation study. Convergence of the algorithm used to sample posterior distributions is documented in numerical experiments. The Bayesian MCMC methodology is then applied to yield data. The in-sample pricing errors obtained are significantly smaller than those of alternative methods. A Bayesian forecast analysis documents the significant superior predictive power of the MCMC approach. Finally, Bayesian model selection criteria are discussed. Incorporating aspects of model uncertainty for the optimal allocation of risk has become an important topic in finance. The second part of the thesis considers an optimal dynamic portfolio choice problem for an ambiguity-averse investor. It introduces new preferences that allow the separation of risk and ambiguity aversion. The novel representation is based on generalized divergence measures that capture richer forms of model uncertainty than traditional relative entropy measures. The novel preferences are shown to have a homothetic stochastic differential utility representation. Based on this representation, optimal portfolio policies are derived using numerical schemes for forward-backward stochastic differential equations. The optimal portfolio policy is shown to contain new hedging motives induced by the investor's attitude toward model uncertainty. Ambiguity concerns introduce additional horizon effects, boost effective risk aversion, and overall reduce optimal investment in risky assets. These findings have important implications for the design of optimal portfolios in the presence of model uncertainty

    Time--consistent investment under model uncertainty: the robust forward criteria

    Full text link
    We combine forward investment performance processes and ambiguity averse portfolio selection. We introduce the notion of robust forward criteria which addresses the issues of ambiguity in model specification and in preferences and investment horizon specification. It describes the evolution of time-consistent ambiguity averse preferences. We first focus on establishing dual characterizations of the robust forward criteria. This offers various advantages as the dual problem amounts to a search for an infimum whereas the primal problem features a saddle-point. Our approach is based on ideas developed in Schied (2007) and Zitkovic (2009). We then study in detail non-volatile criteria. In particular, we solve explicitly the example of an investor who starts with a logarithmic utility and applies a quadratic penalty function. The investor builds a dynamical estimate of the market price of risk λ^\hat \lambda and updates her stochastic utility in accordance with the so-perceived elapsed market opportunities. We show that this leads to a time-consistent optimal investment policy given by a fractional Kelly strategy associated with λ^\hat \lambda. The leverage is proportional to the investor's confidence in her estimate λ^\hat \lambda

    A Simulation Approach to Dynamic Portfolio Choice with an Application to Learning About Return Predictability

    Get PDF
    We present a simulation-based method for solving discrete-time portfolio choice problems involving non-standard preferences, a large number of assets with arbitrary return distribution, and, most importantly, a large number of state variables with potentially path-dependent or non-stationary dynamics. The method is flexible enough to accommodate intermediate consumption, portfolio constraints, parameter and model uncertainty, and learning. We first establish the properties of the method for the portfolio choice between a stock index and cash when the stock returns are either iid or predictable by the dividend yield. We then explore the problem of an investor who takes into account the predictability of returns but is uncertain about the parameters of the data generating process. The investor chooses the portfolio anticipating that future data realizations will contain useful information to learn about the true parameter values.
    corecore