
 

 
 

 
 

warwick.ac.uk/lib-publications 
 

 
 
 
 
Original citation: 
Jin, Xing, Luo, Dan and Zeng, Xudong. (2017) Dynamic asset allocation with uncertain jump 
risks : a pathwise optimization approach. Mathematics of Operations Research. 
 
Permanent WRAP URL: 
http://wrap.warwick.ac.uk/85746  
 
Copyright and reuse: 
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the 
University of Warwick available open access under the following conditions. Copyright © 
and all moral rights to the version of the paper presented here belong to the individual 
author(s) and/or other copyright owners. To the extent reasonable and practicable the 
material made available in WRAP has been checked for eligibility before being made 
available. 
 
Copies of full items can be used for personal research or study, educational, or not-for-profit 
purposes without prior permission or charge. Provided that the authors, title and full 
bibliographic details are credited, a hyperlink and/or URL is given for the original metadata 
page and the content is not changed in any way. 
 
Publisher’s statement: 
https://doi.org/10.1287/moor.2017.0854  
 
A note on versions: 
The version presented here may differ from the published version or, version of record, if 
you wish to cite this item you are advised to consult the publisher’s version. Please see the 
‘permanent WRAP URL’ above for details on accessing the published version and note that 
access may require a subscription. 
 
For more information, please contact the WRAP Team at: wrap@warwick.ac.uk 
 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Warwick Research Archives Portal Repository

https://core.ac.uk/display/74253802?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://go.warwick.ac.uk/lib-publications
http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/85746
https://doi.org/10.1287/moor.2017.0854
mailto:wrap@warwick.ac.uk


Dynamic Asset Allocation with Uncertain
Jump Risks: A Pathwise Optimization

Approach∗

Xing Jin
Warwick Business School, University of Warwick, Coventry, CV4 7AL, UK

telephone: +44 2476575698; Email: Xing.Jin@wbs.ac.uk.

Dan Luo
School of Finance, Shanghai University of Finance and Economics,

777 Guoding Road, Shanghai, 200433, China; Email: luo.dan@mail.shufe.edu.cn.

Xudong Zeng
School of Finance, Shanghai University of Finance and Economics,

777 Guoding Road, Shanghai, 200433, China; Email: zeng.xudong@mail.shufe.edu.cn.

December 22, 2016

Abstract

This paper studies the dynamic portfolio choice problem with ambiguous jump
risks in a multi-dimensional jump-diffusion framework. We formulate a continuous-
time model of incomplete market with uncertain jumps. We develop an efficient
pathwise optimization procedure based on the martingale methods and minimax
results to obtain closed-form solutions for the indirect utility function and the
probability of the worst scenario. We then introduce an orthogonal decomposition
method for the multi-dimensional problem to derive the optimal portfolio strategy
explicitly under ambiguity aversion to jump risks. Finally, we calibrate our model
to real market data drawn from ten international indices and illustrate our results
by numerical examples. The certainty equivalent losses affirm the importance of
jump uncertainty in optimal portfolio choice.
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1 Introduction

A number of empirical and theoretical studies have demonstrated that jump risks have

a substantial impact on optimal portfolio formation. For example, in a single-stock

double-jump model, Liu et al. [24] find that an investor is less willing to take leveraged

or short positions than in a standard diffusion model, due to the investor’s inability to

hedge jump risks through continuous rebalancing. In an international market setting,

Das and Uppal [10] find that systemic jumps reduce the gain from international diver-

sification and that leveraged portfolios may incur large losses upon the strike of jumps.

Meanwhile, estimation of jump models usually lacks precision because jumps, especially

those associated with disaster events, are inherently rare hence difficult to identify. The

reference model associated with the point estimate is highly likely to deviate from the

“true” data-generating one. Accordingly, aversion to model uncertainty, or ambiguity

aversion,1 is incorporated into dynamic asset allocation problems wherein an investor

encounters jump risks (see, e.g., Liu et al. [25], Jin and Zhang [19], Branger and Larsen

[7], and Drechsler [12]).

In this paper, we propose an efficient pathwise optimization approach to solve portfo-

lio choice problems in multi-asset and multi-state-variable jump-diffusion models. Under

these models, an investor, facing both jump and diffusion risks, is averse not only to the

risk of loss but also to the uncertainty regarding the imprecise estimation of the jump

processes. For analytic tractability, our robust control framework closely resembles that

of Liu et al. [25]. Our portfolio method addresses uncertainty regarding the jump size

distribution without assuming a parametric form for alternative jump size distributions;

this enhanced generality distinguishes our work from previous studies, e.g., Liu et al.

[25], Jin and Zhang [19], Branger and Larsen [7], and Drechsler [12].

As is well understood, it is extremely difficult to find the solution to an optimal

1Following the literature, we use the terms uncertain(uncertainty) and ambiguous(ambiguity) syn-
onymously.
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portfolio selection problem in an incomplete market in which there are a large number

of assets and state variables, especially when model uncertainty is present. One usually

uses either the HJB equation approach or the duality-martingale methods to tackle the

problem. Application of the HJB equation to a high-dimensional problem is confined by

the curse of dimensionality, and the martingale methods are not readily extended to an

incomplete market because there are infinitely many martingale measures. In this paper,

we develop a new approach based on the martingale methods and minimax results to

deriving closed form solutions up to solving a set of pathwise optimization problems for

the probability of the worst case scenario and the indirect value function. We then solve

the corresponding optimal portfolio by an orthogonal decomposition.

Equipped with the theoretical results, we conduct a calibration exercise to apply

our approach to gauge the effects of uncertain jump risks. In an economy consisting of

ten international indices, we consider a constant relative risk aversion (CRRA) utility

function and solve the optimal portfolio choice problem with normally distributed return

jump size. We find that the total risky allocations are reduced due to the uncertain jump

risks relative to the optimal portfolio weights without jump ambiguity and ambiguity

aversion. In economic terms, failing to accommodate uncertain jump risks leads to as

high as a 95% loss in the investor’s certainty equivalent wealth for a 20-year investment

horizon in the worst case, under a moderate magnitude of ambiguity aversion. This result

confirms the importance of jump uncertainty in portfolio choice. Similarly, constraining

to parametric alternative jump size distributions instead of more general nonparametric

alternatives registers a notable 33% loss in certainty equivalent wealth for a 20-year

investment when the investor is less risk averse while relatively highly uncertainty averse.

Our approach to solving the optimal portfolio choice problem is closely related to the

work of Jin and Zhang [19] who use a decomposition approach based on an HJB equation.

However, they focus on uncertain jump frequency while do not touch uncertain jump

size distribution. Moreover, their approach is based on the HJB equation for CRRA
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utility functions and is not easy to extend to more general HARA utility functions. In

contrast, in the present paper we do not rely on the dynamic programming principle

and instead we develop a pathwise optimization method based on a duality-martingale

approach in combination with minimax results. Our approach enables us to obtain

the worst case probability and in turn to study the effects of ambiguous jump size

distribution on portfolio choice theoretically and empirically. Furthermore, our method

is certainly desirable for tackling possibly large scale problems and rigorously studying

the existence of solutions, and can be extended to study more general HARA utility

functions. Besides, we develop an alternative decomposition method which can easily

solve the multi-dimensional portfolio choice problem after the worst probability is already

obtained by our pathwise optimization approach.

Our paper is also related to several papers in the operations research literature re-

garding robust portfolio choice. By using the martingale method, Seifried [32] propos-

es a pathwise approach to study optimal investment for worst-case scenario in a non-

probabilistic jump model, which is different from the probabilistic jump model in the

present paper. The martingale approach used there may not be easily extended to deal

with such a case with state variables (e.g. stochastic volatilities) as in our model. More-

over, the present paper follows the line of robust control approach proposed by Hansen

and Sargent [17],[18], dealing with portfolio choice under ambiguity. A special case (infi-

nite ambiguity aversion) of our objective function corresponds to the max-min problem

studied in Seifried’s paper. Goldfarb and Iyengar [15] also study portfolio selection prob-

lems under uncertainty, but they consider a framework of mean-variance. Laeven and

Stadje [23] investigate the problems of optimal portfolio choice and indifference valuation

in a general continuous-time setting with time-consistent ambiguity-averse preferences

and a general and possibly infinite activity jump part in the asset price processes. The

solutions are characterized as solutions to backward stochastic differential equations

(BSDEs). The present paper is different from these mentioned studies either in mathe-
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matical models or in methodologies. For other related literature, we refer to Pennanen

[29] regarding duality approach, Zhao and Ziemba [35] regarding asset allocation with

transaction costs; etc.

The rest of the paper is organized as follows. In the next section, we present the

framework for Merton’s dynamic portfolio selection problem and demonstrate how it

can be extended to incorporate ambiguity aversion. In Section 3, we develop a pathwise

optimization approach using the martingale methods and minimax results. The worst

case probability of jumps is obtained. The proof of the main result is divided into three

subsections. We then find the optimal portfolio choice under the worst case probability

in Section 4. Section 5 is an extension to HARA utility functions. Section 6 is devoted

to a calibration exercise for a model consisting of ten international indices to evaluate

an investor’s fear of uncertain jump risks. Section 7 concludes. The proof of Proposition

1 is collected in Appendix A.

2 Merton’s problem and ambiguity aversion

In this section we formulate a model of incomplete financial market in continuous time.

Asset prices follow a multi-dimensional jump-diffusion process on the fixed time horizon

[0, T ], 0 < T <∞. We consider a complete probability space (Ω,F , P ), where Ω is the

set of states of nature with generic element ω, F is the σ-algebra of observable events

and P is a probability measure on (Ω,F).

The market considered in this paper includes m + 1 assets traded continuously on

the time horizon [0, T ]. One of these assets, which is risk-free, has a price S0,t evolving

according to the differential equation

dS0,t = S0,tr(Xt)dt, S0,0 = 1. (1)

The process Xt = (X1,t, ..., Xl,t)
> is an l-dimensional vector representing the state vari-
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ables of the economy, where > denotes transpose of the row vector. Xt may include

stochastic volatilities and stochastic interest rate as its components. For analytical

tractability, we assume that Xt follows a pure diffusion process:

dXt = bX(Xt)dt+ σX(Xt)dBt, (2)

where bX(Xt) is an l-dimensional vector function and σX(Xt) is an l×d matrix function

of Xt, respectively. σX(Xt) has diffusion coefficient row vectors σXi (Xt), i = 1, ..., l.

Bt = (B1,t, ..., Bd,t)
> is a d-dimensional standard Brownian motion.

The remainingm assets, called stocks, are risky. The price vector St = (S1,t, ..., Sm,t)
>

is modelled by the linear stochastic differential equation

dSt = diag(St−) (b(Xt)dt+ Σb(Xt)dBt + Σq(Xt)Y dNt) ,

where b(Xt) is an m-dimensional vector function; Σb(Xt) is an m × d matrix with d-

iffusion coefficient row vectors σbi (Xt), i = 1, ...,m; Σq(Xt) is an m × (n − d) matrix,

with jump coefficient row vectors σqi , i = 1, ...,m; Let Σ = [Σb,Σq].
2 Y is a diagonal

matrix with diagonal entries Y1, ..., Yn−d. Yk representing the amplitude of type k jump

has probability density Φk(t, dz). Nt = (N1,t, ..., Nn−d,t)
> is an (n− d)-dimensional mul-

tivariate Poisson process. Nk,t admits stochastic intensity λk(Xt). Our results can be

extended to infinite activity jump processes. We assume that Nt is independent of Bt.
3

The flow of information in the economy is given by the natural filtration, i.e., the

right-continuous and augmented filtration {Ft}t∈[0,T ] = {FBt ∨ FNt , t ∈ [0, T ]}, where

2Without loss of generality, we assume that rank(Σ) = m if m ≤ n; rank(Σ) = n if m > n to avoid
redundant stocks in the model. See Section 3 for more discussion on the number of stocks and the
number of risk sources.

3The state variable process and the stock price vector in our model are governed by the same
Brownian motion B(t). Note that when d ≥ 2, the instantaneous correlation between the diffusions
of Xt (σXi dBt) and stock return (σbjdBt) may range from -1 to 1 for each i = 1, ..., l and j = 1, ...,m.
Hence in general the state variables are not perfectly correlated with the continuous part of stock prices
even if they are driven by the same multi-dimensional Brownian motion.
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FBt = σ(Bs; 0 ≤ s ≤ t), and FNt = σ(Ns; 0 ≤ s ≤ t). Observable events are eventually

known, i.e., F = FT .

We consider that an investor is endowed with initial wealth W0; this wealth is invested

in the above-mentioned m+ 1 assets. Let πt = (π1,t, ..., πm,t)
> denote a portfolio, where

πk,t is the proportion of total wealth invested in the k-th stock at time t and is Ft-

predictable. Any portfolio policy πt has an associated wealth process Wt that evolves

as

Wt = W0 +

∫ t

0

r(Xs)Wsds+

∫ t

0

Wsπ
>
s (b(Xs)− r(Xs)1m)ds

+

∫ t

0

Wsπ
>
s Σb(Xs)dBs +

∫ t

0

Ws−π
>
s−Σq(Xs)Y dNs, (3)

where we use 1m to denote the m-dimensional column vector of ones. A portfolio policy

πt is said to be admissible if the corresponding wealth process satisfies Wt ≥ 0 almost

surely. We use A(w0) to denote the set of all admissible trading strategies, given initial

wealth W0 = w0, and we denote by W(w0) the family of all wealth processes generated

by admissible trading strategies in A(w0).

Given a portfolio π in equation (3), the vectors

π̃b = (π̃b1, ..., π̃bd) = π>t Σb(Xt) and π̃q = (π̃q1, ..., π̃q(n−d)) = π>t Σq(Xt)

measure the exposures or sensitivities to diffusion and jump risks, respectively. In partic-

ular, π̃qk reduces to the portfolio weight of stock in a single-stock jump-diffusion model

studied, e.g., by Liu et al. [24], while in the multi-stock jump-diffusion models in the

present paper, the investor reacts to the k-th jump risk by choosing π̃qk appropriately.

The traditional Merton’s problem without ambiguity aversion is that the investor
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attempts to maximize the following quantity

J(w0) = max
π∈A(w0)

E [u(WT )] ,

where the utility function u(x) is non-decreasing and concave on R = (−∞,∞), and

E[·] denotes the expectation under the natural probability measure P .

Our next step is to incorporate ambiguity aversion into Merton’s problem. Suppose

that an investor fears possible model misspecifications and makes investment decisions

to guard against the worst case scenario. Rare disasters in our model are typically

high impact events, while the parameters of the underlying jump processes are difficult

to estimate with adequate accuracy. We therefore focus on the investor’s ambiguity

aversion with regard to uncertain jump parameters to address the issues raised in the

introduction. In other words, the investor’s problem stems from a class of prior models

generated by imprecise estimates of the jump parameters governing, e.g., the jump

intensity and jump size distribution. The investor considers the point estimates and the

corresponding model (called the reference model) to be the most reliable, while she also

explicitly recognizes that the competing models are difficult to distinguish statistically

from the reference model. As a result, the investor makes a precautionary portfolio choice

to guard against the competing alternatives such that her portfolio performs reasonably

well even if the worst case scenario occurs. However, choosing any model other than the

reference model is penalized because the selection is a deviation from the most likely

model.

Before defining the utility function that incorporates ambiguity aversion and devi-

ation penalty, we introduce a set of probability measures, denoted by P , that specify

alternative models of concern. To this end, we define the martingale differential as

q(dt, dz) = (q1(dt, dz), ..., qn−d(dt, dz)),
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where

qk(dt, dz) = dNk(t)− λk(Xt)Φk(t, dz)dt, k = 1, ..., n− d.

Note that P is the probability measure associated with the reference model. Each proba-

bility measure P (ζ) ∈ P has a Radon-Nikodym derivative, dP (ζ)
dP

= ζT =
∏n−d

k=1 ζ
(k)
T , with

respect to P , where the process ζ
(k)
T is modelled by the stochastic differential equation

ζ
(k)
T = ζ

(k)
0 +

∫ T

0

∫
Ak

(ϑk(s)ψk(s, z)− 1)ζ
(k)
s− qk(ds, dz), (4)

with ζ
(k)
0 = 1. Note that ϑk(s) and ψk(s, z) are positive stochastic processes, and ψk(s, z)

satisfies the following relationship

∫
Ak

ψk(t, z)Φk(t, dz) = 1, k = 1, ..., n− d, (5)

where Ak is the support of the size of the k-th jump. In particular, we set Ak = (0,∞)

for a positive jump, Ak = (−1, 0) for a negative jump, and Ak = (−1,∞) for a mixed

jump.

By Ito’s lemma for jump processes, the Radon-Nikodym derivative ζt can be repre-

sented as:

ζt =

n−d∏
k=1

Nk(t)∏
i=1

(ϑk(t
k
i )ψ(tki , z

k
i ))

 exp

(∫ t

0

∫
Ak

(1− ϑk(s)ψk(s, z))λk(Xs)Φk(s, dz)ds

)
. (6)

where tki is the ith jump time of the kth type of jump up to t and zki is the corresponding

jump size. From now on, we suppress the dependence of λk(Xt), ϑk(t), Φk(t, dz), and

ψk(t, z) on t and Xt for notational convenience on occasions of no confusion.

By Theorem T10 of Bremaud (1981), under the probability measure P (ζ), the inten-

sity λk and the density function Φk(dz) are changed into ϑkλk and ψk(z)Φk(dz) in the

alternative model for each k = 1, ..., n− d.
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In the remainder of this paper, we use Θk to denote the set of all possible values of

ϑk(t). For the k-th jump size, we use Ψk to denote the set of all possible nonnegative

functions of ψk(t, z) given by (5). In general, we let Θ = Θ1 × Θ2 × · · · × Θn−d and

Ψ = Ψ1 × Ψ2 × · · · × Ψn−d and we let P denote the set of all alternative probabilities

determined by Θ and Ψ.

It is worth mentioning that the set of all alternative densities defined by (5) differs

from that defined by equation (2) in Liu et al. [25]: we investigate model misspecifi-

cation in the entire neighborhood of the reference model, while Liu et al. [25] consider

only a subset of the neighborhood. In fact, every model in the neighborhood is sta-

tistically indistinguishable from the reference model and thus is possibly a true model.

In particular, Liu et al. [25] use a parametric approach to choose the worst jump size

and jump intensity while we apply a non-parametric method to choose the worst case.

Hence, the worst case jump size distribution remains lognormal in the model of Liu et

al. [25], while the worst case jump size distribution is not necessarily lognormal in our

model.

We now define the utility function with ambiguity aversion. Following Liu et al.

[25], we make some modifications to Merton’s problem described above. We begin by

formulating a utility function in a discrete-time setting and then, by taking the limit,

arrive at the utility function for our continuous-time models. Specifically, for a fixed

time period ∆t, the time-t utility in discrete time is given in a recursive manner by

Ut = inf
P (ζ)∈P

{
Λ
(
Eζ
t (Ut+∆t)

) n−d∑
k=1

1

φk
Eζ
t

[
ln

(
ζ

(k)
t+∆t

ζ
(k)
t

)]
+ Eζ

t (Ut+∆t)

}
, (7)

with UT = u(WT ), and Eζ
t denoting the conditional expectation under the probability

P (ζ).4 As in Liu et al. [25], Eζ
t

[
ln
(
ζt+∆t

ζt

)]
measures the discrepancy between probabil-

4In (7), the utility is in sense of almost surely as usual, and the infimum refers to the essential
infimum. On the other hand, by an abuse of notation, P (ζ) ∈ P is a set of the time-t conditional
probabilities determined by ζT

ζt
. The setting of utility function (7) may be traced back to Anderson et

al. [2]. For general risk functions defined from an axiomatic basis, a conditional formulation of dynamic
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ities P (ζ) and P , which is the standard measure of entropy. The coefficient φk represents

the magnitude of ambiguity aversion to the kth jump. A larger value of φk indicates a

higher ambiguity aversion preference of the investor. The minimization problem reflect-

s aversion to ambiguity of the investor who worries about the imprecise estimation of

model parameters. Therefore, the investor makes decisions to guard against the worst

scenario. Λ(x) is a normalization factor and, for tractability, we assume Λ(x) = (1−γ)x

with γ > 1 following Maenhout [27]. As is well understood, the preference defined in

(7) is dynamically consistent because it is defined recursively (see Epstein and Schneider

[13] and Wang [33]). Then Merton’s problem under ambiguity aversion is given by the

following max-min problem.

J(t,Wt, Xt) = sup
π
{Ut}

= sup
π

inf
ζ

{
Λ
(
Eζ
t (Ut+∆t)

) n−d∑
k=1

1

φk
Eζ
t

[
ln

(
ζ

(k)
t+∆t

ζ
(k)
t

)]
+ Eζ

t (Ut+∆t)

}
, (8)

with UT = u(WT ).

Remark 1: Liu et al. [25] consider a general measure Eζ
t

[
h(ln

ζ
(k)
t+∆t

ζ
(k)
t

)

]
, where h(x) =

x+ β(ex− 1) with β > 0. On contrary, we follow the “relative entropy” of Anderson, et

al. [2] and Maehout [27] corresponding to the case of h(x) = x in this paper. Liu et al.

[25] introduce the “extended entropy” (β 6= 0) because they find that “the minimization

problem ... does not have an interior global minimum for the relative entropy case.”

However, given γ > 1, we do find that an interior global minimum for the portfolio choice

problem in their parameterized model in the relative entropy case (i.e. β = 0). In fact,

our approach indicates that an interior minimum exists for our portfolio choice problem

in the non-parameterized model, hence implying that an interior global minimum exists

for the parameterized model as well, since our minimum is a lower bound of theirs.

programming equations with minimax problem can be found in Ruszczynski and Shapiro [30] where,
unlike our model here, there is no penalty function. We thank an anonymous referee for pointing those
out to us.
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Remark 2: For h(x) = x + β(ex − 1) with β > 0, we will have an extra term in the

integrand in Lemma A1 of Appendix A. The new one is:

Eζ
t [ϑk(s)ψk(s, z) ln(ϑkψk(s, z)) + 1− ϑk(s)ψk(s, z) + β(1− ϑk(s)ψk(s, z))2].

As a result, we are unable to get a closed-form solution for x̂2 given by (32) in Lemma 3

and x̂2 can be solved numerically. In the other words, our approach still works, however,

unfortunately, we can only obtain the worst case density and intensity in an inexplicit

form. To focus on our major purpose of illustrating our approach and applications by a

closed-form solution, we shall not consider this case in this paper.

For analytic tractability, we first consider a constant relative risk aversion (CRRA)

function of u(x) as follows

u(x) =


x1−γ

1−γ , ∀x > 0,

−∞, ∀x ≤ 0.
(9)

and extend to the more general HARA utility function in Section 5.

For practical relevance, we assume that the relative risk aversion coefficient γ is

greater than one. Our approach is extended to the logarithm utility function in Appendix

B.5

In the following Proposition 1, by letting ∆t tend toward zero, we obtain the continuous-

time version of the utility function with ambiguity aversion defined in (7), and the

corresponding Merton’s problem under ambiguity.

Proposition 1 Under Assumption A in Appendix A, the continuous-time version of

the utility with ambiguity aversion in equation (7) is given by

Ut = inf
ζ

Eζ
t

[
e
∫ T
t Hsdsu(WT )

]
, (10)

5We thank an anonymous referee for suggesting this study.
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where

Ht = H(ζt) = (1−γ)
n−d∑
k=1

λk
φk

∫
Ak

[ϑk(t)ψk(t, z) ln(ϑk(t)ψk(t, z))+1−ϑk(t)ψk(t, z)]Φk(dz),

with H(ζt) ≤ 0.

Furthermore, the corresponding Merton’s portfolio choice problem under ambiguity

and ambiguity aversion in continuous time is given by

J(t,Wt, Xt) = sup
π
{Ut} = inf

ζ
sup
π

Eζ
t

[
e
∫ T
t Hsdsu(WT )

]
. (11)

Proof. See Appendix A.

The form of the indirect value function J(t,Wt, Xt) in (11) is a new and key result

with an attractive feature in the present paper, though the result (10) is the same as

(21) in Jin and Zhang [19]. The maximization problem in the “inf sup” problem, which

is given by the second equality of (11), is an investment optimization problem under a

new probability determined by the Radon-Nikodym derivative ζt, and it becomes much

more tractable. Thus, the new expression makes it possible to use the duality method

to evaluate the optimal expected utility function given by (10). In general, it is much

more difficult to solve the original “sup inf” problem defined by the first equality of (11).

As opposed to the ambiguity-neutral case where Ht = 0, the expected utility for an

ambiguity-averse investor is damaged by the discount factor exp(
∫ T
t
Hsds) since Ht ≤ 0.

3 Main Results

In this section, we present our main result which provides a closed-form solution to the

dynamic portfolio choice problem under ambiguous jumps. The proof is left in the next

subsections.

As shown in Bardhan and Chao [4], once unpredictable jumps are included in the
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model, the market is inherently incomplete, regardless of whether m ≥ n or m < n,

where m is the number of risky assets, and n is the total number of Brownian motions

and jumps. In contrast, in a pure-diffusion economy, increasing the number of traded

assets can always complete the market. In Theorem 1 below, we consider the case m = n,

in which the number of risky assets is equal to the total number of diffusions and jumps.

Our approach to solving the portfolio choice problem is especially powerful in this case.

For the case m < n, Jin and Zhang [19] adopt the “fictitious completing” approach

developed by Cvitanic̀ and Karatzas [9] to show that solving the portfolio selection

problem in the original market can be converted into solving one in a set of fictitious

markets. In particular, the number of risky assets is equal to the sum of the diffusions

and jumps, that is, m = n in each fictitious market, and hence, the results developed in

the present paper can be used to solve the optimal portfolio selection problem in each

fictitious market. We follow this exact completion method in our calibration exercise in

Section 6.

In a market with asset returns following the jump-diffusion processes characterized in

the last section, Bardhan and Chao [4] point out that if m > n and there are no arbitrage

opportunities, m−n assets in the market are redundant and can be removed accordingly.

This case is similar to that of a pure-diffusion economy in terms of spanning of risks

although our market remains incomplete. We can simply focus on n non-redundant

assets for the portfolio choice problem.

For illustrative purposes only, we focus on the most widely used case in the literature:

mixed jump size Ak = (−1,∞). Given any k ∈ {1, ..., n− d}, we define the set

Ãk =

{
ck : 0 ≤ ck < 1− 1

γ

}
,

which is associated with the set of feasible k-th jump exposures and alternative k-th

jump size distributions. We let Qζ denote the set of martingale measures under the

13



probability P (ζ). We will specify this set with more details in the next subsection. The

following theorem is our main result which gives a closed-form solution to the indirect

value function and the worst case probability.

Theorem 1 Suppose m = n, that is, the number of risky assets is equal to the total

number of diffusions and jumps. For the portfolio choice problem (11) in Proposition 1,

we have the following duality result:

J(t,Wt, Xt) =
W 1−γ
t

1− γ

(
sup
ζ

sup
ξ∈Qζ

Eζ
t

[
e

1
γ

∫ T
t (Hs+(1−γ)r)dsξδ(t, T )1− 1

γ

])γ

. (12)

Moreover,

sup
ζ

sup
ξ∈Qζ

Eζ
t

[
e

1
γ

∫ T
t (Hs+(1−γ)r)dsξδ(t, T )1− 1

γ

]
= Et

[(
e−

∫ T
t rdsξbδ(t, T )

)1− 1
γ

exp

(∫ T

t

n−d∑
k=1

inf
ck∈Ãk

Gk(s, ck)ds

)]
≡ f(t,Xt), (13)

where ξδ and ξbδ are defined in the next section, and

Gk(s, ck) = −ckθqk −
λk(1− γ)

γφk

∫
Ak

[eχk(z,ck) − 1]Φk(s, dz), (14)

with

χk(z, ck) =
φk

(1− γ)

[
1−

(
1− γck

1− γ
z

)1−γ
]
.

In particular, the intensity of the k-th jump of the worst case is given by

λ∗k = λk

∫
Ak

eχk(z,c∗k)Φ(t, dz)

14



and the density of the k-th jump size of the worst case is given by

Φ∗k(t, dz) =
eχk(z,c∗k)Φk(t, dz)∫
Ak
eχk(z,c∗k)Φ(t, dz)

, (15)

where c∗k is the optimal solution to the minimization problem in (13).

In (13), we have translated the original optimization problem over the stochastic

processes ζ and ξ into a pathwise minimization problem. The former, as is well un-

derstood, is notoriously difficult to solve due to the infinitely many Radon-Nikodym

derivatives ζt and martingale measures ξt and due to the lack of a closed-form solution

for the expectation Eζ
t [·]. The latter is n− d minimization problems over a subset in the

one-dimensional real space R and is straightforward to solve. Meanwhile, the pathwise

minimization problem is free of the curse of dimensionality caused by n− d, the number

of jumps, and thus, it can lead to a significant reduction in the computation burden

when n − d is large. In short, f(t,Xt) can be evaluated by the standard Monte Carlo

method in combination with the pathwise minimization problem. As a result, the op-

timal portfolio can be derived through an HJB equation satisfied by the indirect value

function J(t,Wt, Xt) in (12), which in turn will be obtained in Section 4.

In particular, by letting φk → 0 in the function Gk(t, ck), the indirect value function

J(t,Wt, Xt) for the case without ambiguity can be obtained as

J(t,Wt, Xt) =
W 1−γ
t

1− γ

(
Et

[(
e−

∫ T
t rdsξbδ(t, T )

)1− 1
γ

exp

(
n−d∑
k=1

∫ T

t

∫
Ak

inf
ck
gk(z, ck)Φk(s, dz)ds

)])γ

,

where

gk(z, ck) = −ckθqk +
λk
γ

[(
1− γck

1− γ
z

)1−γ

− 1

]
.

We now turn to the interpretation of the worst case density Φ∗k(t, dz). We can

consider the function ψ∗k = exp {χk(z, c∗k)} as a weighting function. Since c∗k ∈ Ãk, that
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is, c∗k ≥ 0, we can show that ψ∗k is a non-increasing function of jump size z. This result

means that the ambiguity-averse investor pessimistically attaches more weight to more

negative jumps and less weight to more positive jumps, implying a smaller expected

jump size, more negatively skewed and less positively skewed jump size distribution in

the worst case model relative to that in the reference model.

3.1 Proof of Theorem 1

To prove Theorem 1, we apply the duality method provided in Kramkov and Schacher-

mayer ([21],[22]) and Schied and Wu [31] together with the minimax theorem in Borwein

and Zhuang [6] and Proposition 1 given above.

In order to calculate J(t,Wt, Xt) = supπ{Ut}, we now lay out the necessary notations.

As in Section 2, we use P (ζ) to denote the probability defined by the Radon-Nikodym

derivative ζ given by (4) with ϑ1(t), ..., ϑn−d(t) and ψ1(t, z), ..., ψn−d(t, z). We use Eζ(·)

to denote the expectation under P (ζ). According to the discussion in the previous

section, the jump intensities and the jump size distributions under P (ζ) are given by

λζk = ϑk(t)λk,

Φζ
k(t, dz) = ψk(t, z)Φk(t, dz),

for k = 1, ..., n−d. We let Qζ be the family of all densities of equivalent local martingale

measures with respect to the probability P (ζ).

We now introduce more notations. Since the matrix Σ = [Σb,Σq] is assumed to be

invertible, we define  θb

θq

 = Σ−1(b− r1n), (16)

where θb = (θb1, ..., θ
b
d)
> and θq = (θq1, ..., θ

q
n−d)

>. We now introduce a characterization

result of Qζ developed in Bardhan and Chao [4]. Let Γloc denote the family of triples
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δ = (v, θ, ϕ), such that

v(t) = (v1(t), ..., vd(t))
>,

θ(t) = (θ1(t), ..., θn−d(t))
>,

ϕ(t) = (ϕ1(t, z), ..., ϕn−d(t, z))
>,

are predictable processes; θ and ϕ are strictly positive; ϕ satisfies

∫
Ak

ϕk(t, z)Φ
ζ
k(dz) = 1, (17)

for t ∈ [0, T ] and k = 1, ..., n− d, and the following equation holds:

Σbv(t)− Σq(λ
ζ • θ(t) • α̃) = b− r1m.

Or equivalently, by (16),

v(t) = θb, and λζ • θ(t) • α̃ = −θq, (18)

where λζ • θ(t) • α̃ := (λζ1θ1(t)α̃1, ..., λ
ζ
n−dθn−d(t)α̃n−d)

> and

α̃ = (α̃1, ..., α̃n−d), α̃k =

∫
Ak

zϕk(t, z)Φ
ζ
k(t, dz),

for t ≥ 0 and k = 1, ..., n− d. For each δ ∈ Γloc, define the local martingale,

ξδ(t) = ξbδ(t)ξ
q
δ (t), (19)

where

ξbδ(t) = exp

(
−
∫ t

0

vT (s)dB(s)− 1

2

∫ t

0

||v(s)||2ds
)
,
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ξqδ (t) =

n−d∏
k=1

Nk(t)∏
i=1

(θk(t
k
i )ϕk(t

k
i , z

k
i ))

 exp

(∫ t

0

∫
Ak

(1− θk(s)ϕk(s, z))λζkΦ
ζ
k(s, dz)ds

)
.(20)

In particular, ξδ(t) is a supermartingale under P (ζ) for each δ ∈ Γloc since it is non-

negative. We use Γ to denote the subset of Γloc for which ξδ(t) is a martingale.

The following lemma is one of the main results in Bardhan and Chao [4] and plays

a key role in our paper.

Lemma 1 A measure Q ∈ Qζ if and only if there exists a triple δ ∈ Γ, such that the

Radon-Nikodym derivative dQ
dP

= ξδ(t).

Proof. See Bardhan and Chao [4].

As characterized above, each probability in Qζ can be represented by a Radon-

Nikodym derivative ξδ(t) = ξbδ(t)ξ
q
δ (t). Set ξδ(t, T ) = ξδ(T )/ξδ(t) and ξbδ(t, T ) = ξbδ(T )/ξbδ(t).

Equipped with Proposition 1 and Lemma 1, we are able to solve the portfolio problem

by using the duality method developed in Kramkov and Schachermayer ([21], [22]) and

Schied and Wu [31]. First we define the convex conjugate of u(x):

V (y) = (−u)∗(−y) = sup
x>0

(u(x)− xy) =
γ

1− γ
y1− 1

γ , (21)

where (−u)∗(y) is the convex conjugate of −u(x). Note that

Eζ
t

[
exp

(∫ T

t

Hsds

)
W 1−γ
T

1− γ

]
= DtE

ζ
t

[
η(t, T )

W 1−γ
T

1− γ

]
,

where Dt = Eζ
t

[
exp

(∫ T
t
Hsds

)]
and η(t, T ) =

exp(
∫ T
t Hsds)
Dt

. According to Schied and

Wu [31],

J(t,Wt, Xt) = inf
ζ
Dt inf

y>0
(v(y) +Wty), (22)

where

v(y) = inf
ξ∈Qζ

Eζ
t

η(t, T )V

y ξδ(t, T ) exp
(
−
∫ T
t
rds
)

η(t, T )

 .
18



Thus, by using (21) and by noticing γ > 1,

v(y) =
γ

1− γ
y1− 1

γ sup
ξ∈Qζ

Eζ
t

[
exp

(
−
(

1− 1

γ

)∫ T

t

rds

)
η(t, T )

1
γ ξδ(t, T )1− 1

γ

]
,

and consequently, by solving the minimization problem infy>0 in (22) using the definition

of η(t, T ),

J(t,Wt, Xt) =
W 1−γ
t

1− γ

(
sup
ζ

sup
ξ∈Qζ

Eζ
t

[
exp

(
1

γ

∫ T

t

(Hs + (1− γ)r)ds

)
ξδ(t, T )1− 1

γ

])γ

.

(23)

This result completes the proof of (12).

Given the result (23), we now turn to the proof of (13) of Theorem 1. The proof is

broken into several lemmas that are organized into two subsections. The key step is to

show that the maximization problem “supζ supξ∈Qζ” and the expectation “E” in (23)

can be exchangeable, leading to the pathwise optimization problem in (13). The proof

of the exchangeability is presented in Section 3.3. The Fenchel Duality Theorem plays

an important role in the proofs below. For more details about this theorem and relevant

notation, see Chapter 7 of Luenberger [26].

In the following subsection, we provide several auxiliary lemmas for proving (13).

The key result is Lemma 4 which is used directly in the subsection 3.2. Readers may

skip Section 3.2 and read Section 3.3 first. To help readers better understand the main

idea of the proof, we present the following result proved in Section 3.3 to change the

objective function of the optimization problem in (23). The result is:

Eζ

[
exp

(
1

γ

∫ T

0

(Hs + (1− γ)r)ds

)
ξδ(0, T )1− 1

γ

]
(24)

= E

[
e−(1− 1

γ )
∫ T
0 rds

(
ξbδ(T )

)1− 1
γ exp

(
n−d∑
k=1

λk

∫ T

0

∫
Ak

fk(z, θk(t), ϕk(z), ϑk(t), ψk(z))Φk(dz)dt

)]
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where, by letting x1(z) = θk(t)ϕk(z)ϑk(t)ψk(z) and x2(z) = ϑk(t)ψk(z),

fk(z, θk(t), ϕk(z), ϑk(t), ψk(z)) (25)

= (x1(z))1− 1
γ x2(z)

1
γ −

(
1− 1

γ

)
x1(z)− 1

γ
x2(z) +

1

γ
h(x2(z))

subject to

∫
Ak

ψk(z)Φk(dz) = 1,∫
Ak

ϕk(z)ψk(z)Φk(dz) = 1,∫
Ak

θk(t)ϕk(z)ϑk(t)ψk(z)zΦk(dz) = − θ
q
k

λk
,

for k ∈ {1, ..., n−d}. The function h is given by (26) at the beginning of next section. The

proof of Theorem 1 will be based on an optimization problem with the objective function

fk. As a result, the optimization problem in (23) with respect to two stochastic processes

ζt and ξt is converted into a set of pathwise optimization problems, which significantly

relieves the computation burden for solving the indirect value function J(t,Wt, Xt).

3.2 Auxiliary results for the proof of (13)

We fix k ∈ {1, ..., n− d} and define

h(x) =
(1− γ)

φk
[x ln(x) + 1− x], x > 0, (26)

which is the integrand in the function Ht given in Proposition 1. Now we apply the

Fenchel Duality Theorem to solve the following optimization problem:

sup
x=(x1,x2)∈X

x≥0

∫
Ak

[
x

1− 1
γ

1 (z)x
1
γ

2 (z)−
(

1− 1

γ

)
x1(z)− 1

γ
x2(z) +

1

γ
h(x2(z))

]
Φk(dz), (27)

20



subject to the constraint ∫
Ak

x1(z)zΦk(dz) = − θ
q
k

λk
. (28)

As will be clear in next section, the problem (13) reduces to the problem (27). The

constraint in (28) is obtained from the second equation of (18). It will be illustrated in

next section that the optimization problem (27) with the constraint (28) corresponds

to the optimization problem with the objective function (25) given in the last section.

Define

Φk(z) =

∫ z

−∞
|s|Φk(ds).

Define a linear normal space X of functions as follows:

X =

{
x(z) = (x1(z), x2(z)) :

∫
Ak

|x1(z)|Φk(dz) +

∫
Ak

|x2(z)|Φk(dz) <∞
}
,

with norm

||x|| =
∫
Ak

|x1(z)|Φk(dz) +

∫
Ak

|x2(z)|Φk(dz).

Then, the dual space X ∗ of X is

X ∗ = {x∗(z) = (x∗1(z), x∗2(z)) : x∗1(z) ∈ L∞(Φk), x
∗
2(z) ∈ L∞(Φk)}.

Define a concave function: For x = (x1, x2), let

g0(x) =

 x
1− 1

γ

1 x
1
γ

2 −
(

1− 1
γ

)
x1 − 1

γ
x2 + 1

γ
h(x2), ∀x1, x2 ≥ 0,

−∞, otherwise.
(29)

Then (27) is equivalent to the following problem:

sup
x∈X

∫
Ak

g0(x(z))Φk(dz),
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subject to ∫
Ak

x1(z)Sgn(z)Φk(dz) = − θ
q
k

λk
,

where

Sgn(z) =


−1, ∀z < 0,

0, ∀z = 0,

1, ∀z > 0.

To employ the Fenchel Duality Theorem to solve the above problem, we lay out

relevant notations below. Set

C =

{
x ∈ X :

∫
Ak

x1(z)Sgn(z)Φk(dz) = − θ
q
k

λk

}
, D = X ,

f(x) =

 0, if x ∈ C

∞, else
, g(x) =

∫
Ak

g0(x(z))Φk(dz). (30)

We first calculate the functional f ∗ conjugate to f , given by

f ∗(x∗) = sup
x∈C

[〈x, x∗〉 − f(x)] = sup
x∈C

(∫
Ak

x1(z)x∗1(z)Φk(dz) +

∫
Ak

x2(z)x∗2(z)Φk(dz)

)
,

where

〈x, x∗〉 =

∫
Ak

x1(z)x∗1(z)Φk(dz) +

∫
Ak

x2(z)x∗2(z)Φk(dz), x ∈ X and x∗ ∈ X ∗.

Lemma 2 The conjugate space C∗ of f ∗(x∗) is given by

C∗ = {x∗ : f ∗(x∗) <∞} = {(cSgn(z), 0) : z ∈ Ak, c ∈ R} ,
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and

f ∗(x∗) = sup
x∈C

[〈x, x∗〉] = −cθ
q
k

λk
, for x∗ = (cSgn(z), 0) ∈ C∗.

Proof. Define a linear functional on X as for any x ∈ X ,

f1(x) =

∫
Ak

x1(z)Sgn(z)Φk(dz),

and its zero space is given by

Ker(f1) = {x ∈ X : f1(x) = 0} .

Note that for any x(1) ∈ Ker(f1), x(2) ∈ C and integer N , Nx(1) + x(2) ∈ C. Thus, we

must have 〈x(1), x∗〉 = 0 in order that

f ∗(x∗) = sup
x∈C

[〈x, x∗〉] <∞.

By Lemma 1 on Page 188 in Luenberger [26], there exists a constant c, such that 〈x, x∗〉 =

cf1(x) for any x ∈ C. That is,

∫
Ak

x1(z)x∗1(z)Φk(dz) +

∫
Ak

x2(z)x∗2(z)Φk(dz) =

∫
Ak

cx1(z)Sgn(z)Φk(dz),

implying x∗1(z) = cSgn(z), x∗2(z) = 0 and C∗ = {(cSgn(z), 0) : c ∈ R}. Moreover, by

the definition of set C,

f ∗(x∗) = sup
x∈C

[〈x, x∗〉] = sup
x∈C

(∫
Ak

cx1(z)Sgn(z)Φk(dz)

)
= −cθ

q
k

λk
,

completing the proof.

We now turn to the calculation of the concave conjugate functional g∗ of g. According
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to the definition, for x∗ ∈ X ∗,

g∗(x∗) = inf
x∈D

[〈x, x∗〉 − g(x)]

= inf
x∈D

∫
Ak

[x1(z)x∗1(z)|z|+ x2(z)x∗2(z)− g0(x(z))]Φk(dz).

The conjugate space of g∗(x∗) is D∗ = {x∗ : g∗(x∗) > −∞}. When using the Fenchel

Duality Theorem, we only need to calculate g∗(x∗) for x∗ ∈ C∗ since, as shown in

Lemma 4 below, the infimum problem in the Fenchel Duality Theorem is taken over the

set C∗ ∩D∗ with objective function f ∗(x∗)− g∗(x∗). To this end, we have the following

result.

Lemma 3 For x∗ = (cSgn(z), 0) ∈ C∗ ∩D∗,

g∗(x∗) = inf
x∈X

∫
Ak

[x1(z)x∗1(z)|z|+ x2(z)x∗2(z)− g0(x(z))]Φk(dz)

=

∫
Ak

inf
x∈R2

[x1cz − g0(x)]Φk(dz). (31)

=

∫
Ak

1− γ
γφk

[exp {χk(z, c)} − 1]Φk(dz),

where

χk(z, c) =
φk

1− γ

[
1−

(
γc

γ − 1
z + 1

)1−γ
]
.

Furthermore,

C∗ ∩D∗ =

{
(cSgn(z), 0) : c < 1− 1

γ

}
,

Proof. The inequality ≥ in (31) is trivial, namely,

inf
x∈X

∫
Ak

[x1(z)x∗1(z)|z|+ x2(z)x∗2(z)− g0(x(z))]Φk(dz)

≥
∫
Ak

inf
x=(x1,x2)∈R2

[cx1z − g0(x)]Φk(dz).
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We now prove ≤. We solve the optimization problem

inf
x∈R2

[cx1z − g0(x)],

where g0 is defined in (29). It is easy to obtain the optimal solution as

x̂1 =

(
γc

γ − 1
z + 1

)−γ
x̂2, (32)

x̂2 = exp

{
φk

1− γ

[
1−

(
γc

γ − 1
z + 1

)1−γ
]}
≡ exp {χk(z, c)} .

and the corresponding optimal objective function is

inf
x∈R2

[cx1z − g0(x)] =
1− γ
γ

1

φk
[exp {χk(z, c)} − 1].

And furthermore, on the one hand, (x̂1, x̂2) ∈ X for 0 ≤ c < 1 − 1
γ
, implying ≤ since

Ak = (−1,∞). On the other hand,

C∗ ∩D∗ =

{
(cSgn(z), 0) :

∫
Ak

1− γ
γ

1

φk
[exp {χk(z, c)} − 1]Φk(dz) > −∞

}
=

{
(cSgn(z), 0) : 0 ≤ c < 1− 1

γ

}
.

Without causing any confusion, we set

C∗ ∩D∗ =

{
(c, 0) : 0 ≤ c < 1− 1

γ

}
. (33)

Consequently, by the Fenchel Duality Theorem, we can establish the following result.
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Lemma 4

sup
x=(x1,x2)∈C

x≥0

∫
Ak

[
x

1− 1
γ

1 (z)x
1
γ

2 (z)−
(

1− 1

γ

)
x1(z)− 1

γ
x2(z) +

1

γ
h(x2(z))

]
Φk(dz)

= inf
c∈C∗∩D∗

[
−cθ

q
k

λk
− 1− γ

γ

1

φk

∫
Ak

[exp {χ(z, c)} − 1]Φk(dz)

]
.

Proof. By using the definition of functions f(x) and g(x) in (30),we obtain

sup
x=(x1,x2)∈C

x≥0

∫
Ak

[
x

1− 1
γ

1 (z)x
1
γ

2 (z)−
(

1− 1

γ

)
x1(z)− 1

γ
x2(z) +

1

γ
h(x2(z))

]
Φk(dz)

= sup
x∈C

[g(x)− f(x)]

= inf
c∈C∗∩D∗

[f ∗(x∗)− g∗(x∗)]

= inf
c∈C∗∩D∗

[
−cθ

q
k

λk
− 1− γ

γ

1

φk

∫
Ak

[exp {χk(z, c)} − 1]Φk(dz)

]
,

with the second equality following the Fenchel Duality Theorem and completing the

proof.

Remark: If (c∗, 0) is the optimal solution to the right hand side of the equality in

Lemma 4, the plugging the value into (32), we obtain the optimal solution to the left

hand side of the equality, or the problem (22).

3.3 Proof of (13)

The aim of this section is to establish the exchangeability between the maximization

problem “supζ supξ∈Qζ” and the expectation “E” in (23) and the result (24). We then

apply the results in the last section to prove (13). For simplicity, we let t = 0 in the

proof. In this case, as mentioned in Bardhan and Chao [4], the set Γ comprises the

vectors δ = (v, θ, ϕ, ϑ, ψ), with θ, ϕ, ϑ, and ψ being strictly positive, satisfying (18) or
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equivalently,

v(t) = θb,∫
Ak

θk(t)ϕk(t, z)ϑk(t)ψk(t, z)zΦk(dz) = − θ
q
k

λk
, (34)∫

Ak

ϕk(t, z)ψk(t, z)Φk(dz) = 1,∫
Ak

ψk(t, z)Φk(dz) = 1,

for t ≥ 0 and k = 1, ..., n − d. We let Γd denote the family of the vectors δ =

{(v, θ, ϕ, ϑ, ψ) = (v(t), θ(t), ϕ(t, z), ϑk(t), ψ(t, z))}t∈[0,T ] satisfying four conditions in (34)

and (θ(t), ϕ(t, z), ϑk(t), ψ(t, z)) solving the following optimization problem mentioned at

the end of Section 3.1:

sup
δ∈Γd

∫
Ak

fk(z, θk(t), ϕk(z), ϑk(t), ψk(z))Φk(dz) (35)

=

∫
Ak

[
(x1(z))1− 1

γ x2(z)
1
γ −

(
1− 1

γ

)
x1(z)− 1

γ
x2(z) +

1

γ
h(x2(z))

]
Φk(dz),

for t ≥ 0 and k ∈ {1, ..., n − d}. From the above objective function and the sec-

ond constraint in (34), the two variables ϑk(t) and ψk(z) are not separable and the

same holds true for the two variables θk(t) and ϕk(z). For this reason, by letting

x1(z) = θk(t)ϕk(z)ϑk(t)ψk(z) and x2(z) = ϑk(t)ψk(z), it is straightforward to conclude

that the above optimization problem with the second constraint only is equivalent to

the optimization problem (27) with the constraint (28), which has been solved in the

preceding subsection. After obtaining the optimal x∗1(z) and x∗2(z), we can recover the

optimal θ∗, ϕ∗, ϑ∗, ψ∗ through normalization to give the solution to the above optimiza-

tion problem (35). In particular, ϕ∗ and ψ∗ satisfy the third and the fourth constraints

in (34). The details are presented below.

We prove the following lemma.
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Lemma 5

sup
ζ

sup
ξ∈Qζ

Eζ
[
e−(1− 1

γ )
∫ T
0 rdsη

1
γ (ξδ(T ))1− 1

γ

]
= sup

δ∈Γd
E
[
ζ(T )e−(1− 1

γ )
∫ T
0 rdsη

1
γ (ξδ(T ))1− 1

γ

]
,

where η = exp
(∫ T

0
H(ζs)ds

)
. Significantly, from (35), the right hand side is a pathwise

optimization problem.

Proof. From the definition of Γd and Lemma 1 in Section 3.1, we can see that given

δ = {(v, θ, ϕ, ϑ, ψ) ∈ Γd, the corresponding ζ defined by (6) and ξδ given by (19) satisfy

conditions in Section 2 and Section 3.1. Thus, by noticing that Eζ(Y ) = E(ζY ), it

suffices to prove

sup
ζ

sup
ξ∈Qζ

E
[
ζ(T )e−(1− 1

γ )
∫ T
0 rdsη

1
γ (ξδ(T ))1− 1

γ

]
≤ sup

δ∈Γd
E
[
ζ(T )e−(1− 1

γ )
∫ T
0 rdsη

1
γ (ξδ(T ))1− 1

γ

]
.

(36)

Let Nk(t, T ) = Nk(T ) − Nk(t) denote the number of k-th type of jump in the interval

(t, T ]. Note that for any t ∈ [0, T ],

ξδ(T )1− 1
γ = (ξδ(t))

1− 1
γ (ξδ(t, T ))1− 1

γ ,

where

ξδ(t, T ) = exp

(
−
∫ T

t

vT (s)dz(s)− 1

2

∫ T

t

||v(s)||2ds
)
×

n−d∏
k=1

Nk(t,T )∏
i=1

(θk(t
k
i )ϕk(t

k
i , z

k
i ))

× exp

(∫ T

t

∫
Ak

(1− θk(s)ϕk(s, z))λkϑk(t)ψk(t, z)Φk(dz)ds

)
.

Note that ζ(T ) can be decomposed in the same way. Hence the optimal v∗(t), θ∗k(t),

ϕ∗k(s, z), ϑk(t)
∗ and ψ∗k(t, z) only depend on the state variables Xt. Thus, if we let ΓX

denote the family of δ with v(t), θk(t), ϕk(t, z), ϑk(t) and ψk(s, z) only depending on the
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state variables Xt, then

sup
ζ

sup
ξ∈Qζ

E
[
ζ(T )e−(1− 1

γ )
∫ T
0 rdsη

1
γ (ξδ(T ))1− 1

γ

]
= sup

δ∈ΓX

E
[
ζ(T )e−(1− 1

γ )
∫ T
0 rdsη

1
γ (ξδ(T ))1− 1

γ

]
.

Hence, to prove (36), it suffices to show the following result:

sup
δ∈ΓX

E
[
ζ(T )e−(1− 1

γ )
∫ T
0 rdsη

1
γ (ξδ(T ))1− 1

γ

]
≤ sup

δ∈Γd
E
[
ζ(T )e−(1− 1

γ )
∫ T
0 rdsη

1
γ (ξδ(T ))1− 1

γ

]
.

(37)

Note that, by (6), (20) and (19), we have

η
1
γ ζ(T ) (ξδ(T ))1− 1

γ =
(
ξbδ(T )

)1− 1
γ ξ̃δ(T ) exp

(
n−d∑
k=1

λk

∫ T

0

∫
Ak

fk(z, θk(t), ϕk(z), ϑk(t), ψk(z))Φk(dz)dt

)
,

where fk(z, θk(t), ϕk(z), ϑk(t), ψk(z)) is defined in (35) and

ξ̃δ(t) =
n−d∏
k=1

Nk(t)∏
i=1

(θk(t
k
i )ϕk(t

k
i , z

k
i )ϑk(t)ψk(t

k
i , z

k
i ))1− 1

γ (ϑk(t)ψk(t
k
i , z

k
i ))

1
γ

× exp

(∫ t

0

∫
Ak

(1− (θk(s)ϕk(s, z)ϑk(t)ψk(s, z))
1− 1

γ (ϑk(t)ψk(s, z))
1
γ )λkΦk(dz)ds

)
.

Furthermore, ξ̃δ(t) can be rewritten as

ξ̃δ(t) =

n−d∏
k=1

Nk(t)∏
i=1

θ̃k(t
k
i )ϕ̃k(t

k
i , z

k
i )

 exp

(∫ t

0

∫
Ak

(1− θ̃k(s)ϕ̃k(s, z))λkΦk(dz)ds

)
,

where

θ̃k(s) = (θk(s))
1− 1

γ
ϑk(t)

∫
Ek

(ϕk(s, z))
1− 1

γ
ψk(s, z)Φk(dz),

ϕ̃k(s, z) =
(ϕk(s, z))

1− 1
γ
ψk(s, z)∫

Ak
(ϕk(s, z))

1− 1
γ ψk(s, z)Φk(dz)

. (38)
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Then ∫
Ak

ϕ̃k(s, z)Φk(dz) = 1.

And thus, for δ ∈ ΓlocX , ξ̃δ(t) is a non-negative local martingale from C4 in Bremaud [8]

and hence a supermartingale. And moreover, noticing that the state variables Xt do not

include jumps, we have

E
[
ξ̃δ(T )|FXT

]
≤ E

[
ξ̃δ(0)|FXT

]
= 1, (39)

where FXT is the σ-algebra generated by {Xt, 0 ≤ t ≤ T}. Hence, by (39), for δ ∈ ΓX ,

E
[
e−(1− 1

γ )
∫ T
0 rdsη

1
γ ζ(T ) (ξδ(T ))1− 1

γ

]
= E

[
E
[
e−(1− 1

γ )
∫ T
0 rdsη

1
γ ζ(T ) (ξδ(T ))1− 1

γ |FXT
]]

= E

e−(1− 1
γ )
∫ T
0 rds

(
ξbδ(T )

)1− 1
γ E
[
ξ̃δ(T )|FXT

]
e

(
n−d∑
k=1

λk
∫ T
0

∫
Ak

fk(z,θk(t),ϕk(z),ϑk(t),ψk(z))Φk(dz)dt

)
≤ E

e−(1− 1
γ )
∫ T
0 rds

(
ξbδ(T )

)1− 1
γ e

(
n−d∑
k=1

λk
∫ T
0

∫
Ak

fk(z,θk(t),ϕk(z),ϑk(t),ψk(z))Φk(dz)dt

) . (40)

Let θ∗k(s), ϕ
∗
k(s, z), ϑ

∗
k(s) and ψ∗k(s, z), k = 1, ..n − d, denote the optimal solution to the

problem (35). By (32) in the proof of Lemma 3,

ϑ∗k(s)ψ
∗
k(s, z) = exp {χk(z, c∗k)} ,

θ∗k(s)ϕ
∗
k(s, z)ϑ

∗
k(t)ψ

∗
k(s, z) =

(
γc∗k
γ − 1

z + 1

)−γ
exp {χk(z, c∗k)} ,

implying

ϑ∗k(s) =

∫
Ak

exp {χk(z, c∗k)}Φk(s, dz), (41)

ψ∗k(s, z) =
exp {χk(z, c∗k)}∫

Ak
exp {χk(z, c∗k)}Φk(s, dz)

, (42)
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θ∗k(s) =

∫
Ak

(
γc∗k
γ − 1

z + 1

)−γ
Φk(dz), ϕ∗k(s, z) =

(
γc∗k
γ−1

z + 1
)−γ

∫
Ak

(
γc∗k
γ−1

z + 1
)−γ

Φk(dz)
.

And furthermore, by Theorems T10 and T11 of Chapter VIII in Bremaud [8], ξ̃δ∗(t) is

a martingale, implying

E
[
ξ̃δ∗(T )|FXT

]
= 1.

Therefore, by (40),

E
[
e−(1− 1

γ )
∫ T
0 rdsη

1
γ ζ(T ) (ξδ(T ))1− 1

γ

]
≤ E

e−(1− 1
γ )
∫ T
0 rds

(
ξbδ(T )

)1− 1
γ E[ξ̃δ∗(T )|FXT ]e

(
n−d∑
k=1

λk
∫ T
0

∫
Ak

fk(z,θ∗k(t),ϕ∗k(z),ϑ∗k(t),ψ∗k(z))Φk(dz)dt

)
= E

e−(1− 1
γ )
∫ T
0 rds

(
ξbδ(T )

)1− 1
γ ξ̃δ∗(T )e

(
n−d∑
k=1

λk
∫ T
0

∫
Ak

fk(z,θ∗k(t),ϕ∗k(z),ϑ∗k(t),ψ∗k(z))Φk(dz)dt

)
= E

[
e−(1− 1

γ )
∫ T
0 rdsη

1
γ ζ(T )

(
ξbδ(T )

)1− 1
γ (ξqδ∗(T ))1− 1

γ

]
(43)

= E
[
e−(1− 1

γ )
∫ T
0 rdsη

1
γ ζ(T ) (ξδ∗(T ))1− 1

γ

]
,

for each δ ∈ ΓX . Here we have used the fact that ξbδ(T ) = ξbδ∗(T ) since v(t) = θb by (34).

Hence (37) is proved and this completes the proof of the lemma.

Note by virtue of Lemma 5 (see (40)), we have

sup
ζ

sup
ξ∈Qζ

Eζ
[
e−(1− 1

γ )
∫ T
0 rdsη

1
γ (ξδ(T ))1− 1

γ

]
= E

[
e−(1− 1

γ )
∫ T
0 rds

(
ξbδ(T )

)1− 1
γ exp

(
n−d∑
k=1

λk

∫ T

0

sup
δ∈Γd

∫
Ak

fk(z, θk(t), ϕk(z), ϑk(t), ψk(z))Φk(dz)dt

)]

= E

[
e−(1− 1

γ )
∫ T
0 rds

(
ξbδ(T )

)1− 1
γ exp

(∫ T

0

n−d∑
k=1

inf
ck∈Ãk

Gk(s, ck)ds

)]
,

where the last equality is by Lemma 4 and Gk is defined as that in Theorem 1.
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At last, the worst case intensity and density are obtained by (41) and (42). This

completes the proof of Theorem 1.

4 Optimal Investment Strategy in the Worst Case

By Theorem 1, we obtain the indirect utility function, the jump distribution, and intensi-

ty in the worst case by the duality approach. Substituting them into the corresponding

Hamilton-Jacobi-Bellman equation, we can directly find the optimal portfolio under

ambiguity as follows. However, it is also possible to employ the classic martingale and

duality approach to find the optimal portfolio, instead of solving the HJB equation which

relies on the dynamic programming principle. For simplicity, we take the HJB equation

approach in this section. The following method is based on an orthogonal decomposition

technique, which is different from the decomposition approach in Jin and Zhang [19], or

Aı̈t-Sahalia et al. [1].

Note that rank(Σ) = rank([Σb,Σq]) = m and we consider the case m = n. Then

Σ is an invertible square matrix. Denote Σ̂q = Σ−1Σq and Σ̂b = Σ−1Σb. We have two

orthogonal sub-spaces of Rn, generated by the columns of Σ̂q and Σ̂b. Decomposed into

the two orthogonal spaces, the optimal portfolio π∗ can be written as

π∗ = (Σ−1)>(Σ̂qπ̄
∗ + Σ̂bπ

∗
⊥), (44)

where π̄∗ is a (n − d) × 1 column vector, and π∗⊥ is a d × 1 vector. Note that Σ̂>q Σ̂q =

I(n−d)×(n−d), Σ̂
>
b Σ̂b = Id×d, Σ̂

>
b Σ̂q = 0, and Σ̂>q Σ̂b = 0.

Then the following proposition describes two parts π̄∗ and π∗⊥.
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Proposition 2

π∗⊥ =
1

γ
Σ>b (ΣΣ>)−1(b− r1m) + σX>

fX
f
,

π̄∗ = arg max
π̄

π̄Σ>q (ΣΣ>)−1(b− r1m) +
1

1− γ

n−d∑
k=1

λ∗k

∫
Ak

(1 + π̄kz)1−γΦ∗k(dz) (45)

where the worst case density λ∗k and distribution Φ∗k(dz) are obtained by Theorem 1.

Proof. Given the worst probability by Theorem 1, by using the standard dynamic

programming approach to stochastic control and an appropriate Ito’s lemma for jump-

diffusion processes, we can derive the corresponding indirect value function, J , of the

investor’s problem solving the HJB equation below:

0 = max
π

{
Jt +

1

2
W 2π>ΣbΣ

T
b πJWW +W [π>(b− r1m) + r]JW (46)

+bXJX +Wπ>Σbσ
X>JWX +

1

2
Tr(σXσX>JXX>)

+
n−d∑
k=1

λ∗k

∫
Ak

[J(W +Wπ>Σqkz)− J(W )]Φ∗k(dz) +H(ζ∗t )J

}
,

where Σqk denotes the k-th column of Σq.

From Theorem 1, J(t,W,X) = W 1−γ

1−γ (f(t,X))γ. Substituting J into (46), we find the

optimal portfolio π∗ by solving

max
π

π>(b− r1n)− γ

2
π>ΣbΣ

>
b π + γπ>Σbσ

X>fX/f

+
1

1− γ

n−d∑
k=1

λ∗k

∫
Ak

(1 + π>Σqkz)1−γΦ∗k(dz). (47)

Substituting the decomposition π = (Σ−1)>(Σ̂qπ̄ + Σ̂bπ⊥) into the above problem, we

33



obtain

max
π⊥,π̄

(π̄>Σ̂>q + π>⊥Σ̂>b )Σ−1(b− r1m)− γ

2
π>⊥π⊥ + γπ>⊥σ

X>fX
f

+
1

1− γ

n−d∑
k=1

λ∗k

∫
Ak

(1 + π̄>(Σ̂>q Σ̂q)kz)1−γΦ∗k(dz)

where (Σ̂>q Σ̂q)k denotes the kth column of the matrix. As we know, (Σ̂>q Σ̂q) = I(n−d)×(n−d),

so π̄>(Σ̂>q Σ̂q)k = π̄k.

The maximization problem can be solved separately for π̄ and π⊥. Note that π∗⊥

solves the first order condition with respect to π⊥:

Σ̂>b Σ−1(b− 1m)− γπ⊥ + γσX>
fX
f

= 0.

It follows from the above equation that

π∗⊥ =
1

γ
Σ>b (ΣΣ>)−1(b− r1m) + σX>

fX
f
.

Similarly,

π̄∗ = arg max
π̄

π̄>Σ>q (ΣΣ>)−1(b− r1m) +
1

1− γ

n−d∑
k=1

λ∗k

∫
Ak

(1 + π̄kz)1−γΦ∗k(dz).

Note that π̄∗ may not be achieved at an interior point of its admissible region. For

example, for a mixed jump size of (−1,∞), π̄∗k must be in [0, 1] and it is possible to

achieve the maximum at 0 or 1. However, when the maximum is achieved at an interior

point, the first order condition gives an individual equation of π̄∗k as follows.

Σ>qk(ΣΣ>)−1(b− r1m) + λ∗k

∫
Ak

(1 + π̄∗kz)−γzΦ∗k(dz) = 0.
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Since [Σ̂b, Σ̂q] is an n × n identity matrix, the optimal portfolio choice π can be

re-written as

π = (Σ−1)>[Σ̂b, Σ̂q]

 π⊥

π̄

 = (Σ−1)>

 π⊥

π̄

 .

Compared to Proposition 1 of Jin and Zhang [19], π̄ and π⊥ here are corresponding to

πq and πb there, respectively, given the worst probability. It worths mentioning that

our decomposition approach is different from theirs and it may be extended to the case

m < n or m > n.

5 Extension to HARA utility functions

In Bajeux-Besnainou et al. [3], they obtain closed-form solutions for HARA optimal

dynamic portfolios in pure-diffusion models. Specifically, they employ the duality results

developed by Karatzas et al. [20] in complete markets. A key assumption for the

applicability of the duality results in Karatzas et al. [20] is that there is an unique

equivalent martingale measure in a complete market. By contrast, the markets in the

present paper are incomplete due to random jump size and thus there exist infinitely

many equivalent martingale measures. To solve a HARA optimal dynamic portfolio

problem, we resort to the duality results for incomplete market recently developed by

Bellini and Frittelli [5] in combination with the results developed in the last section. In

the model, we assume that the dynamics of the bond and stock prices remain unchanged

and an investor has a HARA utility function given by

U(x) =


1

1−γ (x− a)1−γ, ∀x > a

−∞, ∀x ≤ a
.

35



When a = 0, U(x) reduces to a CRRA utility function. Here we consider a realistic case

with a > 0, that is, the relative risk aversion is decreasing with x. In Bajeux-Besnainou

et al. [3], they interpret the constant a as “subsistence level”.

Proposition 3 Under the HARA utility function, for the portfolio choice problem under

ambiguity and ambiguity aversion (11), we have the following duality result

J(t,Wt, Xt) =
(Wt − aκt)1−γ

1− γ

(
sup
ζ

sup
ξ∈Qζ

Eζ
t

[
exp

(
1

γ

∫ T

t

(Hs + (1− γ)r)ds

)
ξδ(t, T )1− 1

γ

])γ

=
(Wt − aκt)1−γ

1− γ
(f(t,Xt))

γ ,

where κt = Et

[
exp

(
−
∫ T
t
r(Xs)ds

)
ξbδ(t, T )

]
, and f(t,Xt) is given by (13), ξδ(t, T ) and

ξbδ(t, T ) are given in Section 3.1.

Proof. We now use the results obtained for the CRRA utility function and the results

in Bellini and Frittelli [5] to solve the optimal portfolio choice problem with a HARA

utility function. First we derive duality result for the model without ambiguity aversion,

and then we obtain duality result for the model with ambiguity aversion by using the

same idea as before. Note that

U
(
U ′−1(y)

)
≥ U(x) + y

(
U ′−1(y)− x

)
, ∀x > 0, y > 0,

where U ′−1(y) = I(y) = y−
1
γ + a. For simplicity, we consider t = 0 and let βt =

exp
(
−
∫ T
t
r(Xs)ds

)
. Let Q denote the set of all equivalent martingale measures. Thus,

for any ξ ∈ Q and terminal wealth WT , we have

U
(
U ′−1(yβ0ξT )

)
≥ U(WT ) + yβ0ξT

(
U ′−1(yβ0ξT )−WT

)
,

and

E
[
U
(
U ′−1(yβ0ξT )

)]
≥ E [U(WT )] , (48)
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where y satisfies

E
[
β0ξTU

′−1(yβ0ξT )
]

= W0, (49)

giving

y =
E
[
(β0ξT )1− 1

γ

]γ
(W0 − aE(β0ξT ))γ

.

We now prove that there exists a ξ ∈ Q such that (β0ξT )−
1
γ can be replicated and hence

I(yβ0ξT ) = y−
1
γ (β0ξT )−

1
γ + a can be replicated. By Kramkov and Schachermayer [21]

and by considering the utility function 1
1−γx

1−γ, we have that there exists a ξ ∈ Q such

that (β0ξT )−
1
γ can be replicated. Furthermore, according to (48), we have

u(W0) = E
[
U(U ′−1(yξT ))

]
=

(W0 − aE(β0ξT ))1−γ

1− γ
E
[
(β0ξT )1− 1

γ

]γ
, (50)

with y satisfying (49).

In the following, we use some results in Bellini and Frittelli [5] to prove the following

u(W0) = inf
ς∈Q

(W0 − aE(β0ςT ))1−γ

1− γ
E
[
(β0ςT )1− 1

γ

]γ
.

To this end, we denote with L∞ the space of essentially bounded random variables and

define

M0 = {W ∈ L∞ : E[β0ςTW ] ≤ W0 ∀ς ∈ Q}.

According to Lemma 1.1 and 1.2 of Bellini and Frittelli [5] (note we do not need As-

sumption 1.3), we have

u(W0) = sup
W∈M0

E[U(W )]. (51)

By following (1.8) in Bellini and Frittelli [5], we define

U(W0; ς, P ) = sup
W∈Mς

0

E[U(W )],
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where M ς
0 = {W ∈ L∞ : E[β0ςTW ] ≤ W0}. It is easy to see from (51)

u(W0) = sup
W∈M0

E[U(W )] ≤ inf
ς∈Q

U(W0; ς, P ), (52)

since M0 ⊆ M ς
0 . As in Section 2.1 of Bellini and Frittelli [5], we define the concave

conjugate U∗(x∗) of the utility function U(x) as:

U∗(x∗) = inf
x
{xx∗ − U(x)}.

In particular, for the HARA utility function U(x), we have

U∗(x∗) =
γ

γ − 1
(x∗)1− 1

γ + ax∗.

Hence, using Corollary 2.1 of Bellini and Frittelli [5], we have

U(W0; ς, P ) = min
λ∈(0,∞)

{λW0 − EP [U∗ (λβ0ςT )]}

=
(W0 − aE(β0ςT ))1−γ

1− γ
E
[
(β0ςT )1− 1

γ

]γ
,

and, by (52),

u(W0) ≤ inf
ς∈Q

(W0 − aE(β0ςT ))1−γ

1− γ
E
[
(β0ςT )1− 1

γ

]γ
.

From (50), we have

u(W0) = inf
ς∈Q

(W0 − aE(β0ςT ))1−γ

1− γ
E
[
(β0ςT )1− 1

γ

]γ
.
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We now turn to the model with ambiguity aversion. By following the same approach

as that for Theorem 1, we can derive the indirect value function as

J(0,W0, X0) =
1

1− γ

(
sup
ζ

sup
ξ∈Qζ

(W0 − aEζ(β0ξδ(T )))1−γ

× Eζ

[
exp

(
1

γ

∫ T

0

(Hs + (1− γ)r)ds

)
ξδ(T )1− 1

γ

])γ
.

Hence

Eζ [β0ξδ(T )] = Eζ
[
β0ξ

b
δ(T )ξqδ (T )

]
= Eζ

[
Eζ
[
β0ξ

b
δ(T )ξqδ (T )|FXT

]]
= Eζ

[
β0ξ

b
δ(T )Eζ

[
ξqδ (T )|FXT

]]
= Eζ

[
β0ξ

b
δ(T )

]
,

since Eζ
[
ξqδ (T )|FXT

]
= 1, implying that Eζ [β0ξδ(T )] is independent of ζ. And therefore,

J(0,W0, X0) =
(W0 − aE

[
β0ξ

b
δ(T )

]
)1−γ

1− γ

×

(
sup
ζ

sup
ξ∈Qζ

Eζ

[
exp

(
1

γ

∫ T

0

(Hs + (1− γ)r)ds

)
ξδ(T )1− 1

γ

])γ

=
(W0 − aE

[
β0ξ

b
δ(T )

]
)1−γ

1− γ
(f(0, X0))γ,

where f(0, X0) is given by Theorem 1. Likewise, we can show

J(t,Wt, Xt) =
(Wt − aE

[
βtξ

b
δ(t, T )

]
)1−γ

1− γ
(f(t,Xt))

γ.

The above proposition suggests that the worst case probability ζ is independent of

the wealth Wt. In other words, the wealth of an investor with a HARA utility function

does not affect her effective ambiguity aversion coefficient. The reason for this is that the

special form of the normalization factor Λ(x) = (1 − γ)x is used in the utility function

(7), which is proposed by Maenhout [27]. But it is worth mentioning that this property
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still holds in the framework of ambiguity aversion in Drechsler [12].

Given the indirect value function, the corresponding optimal portfolio strategy can

be obtained by using the same orthogonal decomposition method in Section 4. To save

space, we omit the derivation.

6 Numerical examples

To illustrate our approach and results, we specialize in a simplified jump-diffusion model

with only one jump as follows. For the purpose of illustration, we do not consider the

state variable Xt in this model.

dSn
Sn

= bndt+
M∑
m=1

σnmdBm + σqnY dN, n = 1, 2, ...,M, (53)

where Y = exp(µJ +σJε)−1 and ε is a standard normal random variable; E(dN) = λdt;

B1 to BM are standard independent Brownian motions and independent of Y ; M is the

total number of stocks.

Theorem 1 cannot be applied to this case directly. As discussed in Section 3, we may

add one fictitious risky asset with an undetermined drift term. Then we have eleven risky

assets, ten Brownian motions and one jump process in the fictitious market. Theorem

1 is therefore able to apply. The optimal portfolio is obtained when the investment

is restricted to the first ten assets by adjusting the drift term of the fictitious asset.

For details of this treatment, we refer to Jin and Zhang [17], Karatzas et al. [18], and

Cvitanic and Karatzas [8].

6.1 Model calibration

We calibrate the model to the monthly continuously compounded returns on the eq-

uity indices of 10 developed and 10 emerging countries/regions, respectively. The de-
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veloped countries include the United States (US), United Kingdom (UK), Switzerland

(SW), Germany (GE), France (FR), Australia (AU), Canada (CA), Sweden (SD), Japan

(JP), and Netherlands (NE). The emerging countries/regions include Argentina (ARG),

Brazil (BRA), Hong Kong (HKG), India (IND), Indonesia (IDO), South Korea (KO-

R), Malaysia (MAL), Mexico (MEX), Singapore (SNG), and Taiwan (TWN). To avoid

confusion, we abbreviate the developed countries with two characters and the emerging

countries/regions with three characters. We collect beginning-of-month equity index

levels from finance.yahoo.com. Due to data availability, our sample period is January

1993 to December 2015 for the developed group and July 1997 to January 2016 for the

emerging group.

Our sample comprises the Asian crisis of 1997, the hedge fund crisis of late 1998,

the financial crisis of 2008 and the European sovereign-debt crisis of 2010 and 2011.

Large return shocks during those turbulent periods contribute to the high kurtosis of

the returns. Occasional large market crashes lead to the negative skewness of the returns.

Pairwise correlations among the equity index returns are unanimously higher than 43%

within the developed group and higher than 36% within the emerging group. This result

indicates the close linkage of the international equity markets.

We estimate the jump-diffusion model using the method of moments approach pro-

vided by Das and Uppal [10] and Jin and Zhang [19]. The first four unconditional

moments of the multivariate return series are considered. Following Das and Uppal [10],

we derive in closed form the characteristic function of the continuously compounded

stock returns. We then differentiate the characteristic function to obtain the moments.
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Let Ȳn = ln(σqnY + 1). For n,m = 1, 2, ...,M (M = 10),

mean = t(bn − 0.5
∑M

k=1 σ
2
nk + λE[Ȳn]),

covariance = t(
∑M

k=1 σnkσmk + λE[ȲnȲm]),

coskewness = tλE[(Ȳn)2Ȳm]
variancen(variancem)0.5 ,

excess kurtosis = tλE[(Ȳn)4]
(variancen)2 ,

(54)

where E[(Ȳn)i(Ȳm)j] =
∫ +∞
−∞ (Ȳn)i(Ȳm)jf(x)dx with i = 1, 2, ...; j = 0, 1, ...; and f(·) is

the standard normal density. This integral can be evaluated easily using the numeric

quadrature method. We first use the 10×10 co-skewness conditions and 10×1 kurtosis

conditions to estimate the 13 jump parameters (σqn, µJ , σJ , λ) by minimizing the sum

of squared deviations of the model moments from those in data. We then derive bn and

σnm by exactly matching the 10×1 mean conditions and 10×10 covariance conditions,

respectively.

Table 1 presents the parameter estimates6 and return moments on monthly basis.

From Panel A, we see that the average jump size is -12.0% for the developed countries.

This result is consistent with the negative skewness of the return series. The standard

deviation of jump size is 6.2%. Thus a 95% confidence interval for the jump size is (-

24.4%, 0.4%). As shown in the moment condition in equation (54), large-sized jumps are

crucial to match the high excess kurtosis of the data. The jump intensity is estimated

to be 0.073. Simultaneous jumps among the ten markets are expected to occur about

once every 14 months, or once every 1.1 years. This is consistent with the literature

which finds that equity indices jump about once or twice a year. Turn to Panel B,

the average jump size is -8.0% with a standard deviation of jump size 19.7% for the

emerging countries/regions. This much higher standard deviation of jump size helps to

match the largely inflated excess kurtosis of the return series observed for the emerging

countries/regions compared to the developed ones. The jump intensity is estimated to

6To save space, bn and σnm are not listed but available upon request.
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Table 1: Parameter Estimates

This table reports parameter estimates of the multivariate jump-diffusion model of the
stock index returns. We estimate the parameters by minimizing the sum of squared
deviations of the return moments implied by model from those in data. We provide
the higher moments reconstructed from model and those in data. Skew and ExKurt
denote return skewness and excess kurtosis, respectively. All the parameter estimates
and moments are on the monthly basis. Panel A gives the results for the developed
countries for the sample period January 1993 to December 2015. Panel B gives the
results for the emerging countries/regions for the period July 1997 to January 2016.

Panel A: Developed countries

U.S. U.K. SW GE FR AU CA SD JP NE

µJ -0.118

σJ 0.062

λ 0.073

σq 0.654 0.538 0.781 0.986 0.705 0.500 0.784 0.780 0.664 0.514

Skew: model -0.708 -0.459 -0.472 -0.843 -0.740 -0.419 -1.202 -0.653 -0.347 -0.442

Skew: data -0.855 -0.698 -0.557 -0.867 -0.855 -0.741 -1.226 -0.674 -0.514 -0.527

ExKurt: model 1.932 1.080 1.131 2.464 2.052 0.956 3.929 1.741 0.748 1.027

ExKurt: data 1.761 0.735 1.141 2.626 2.120 0.581 4.093 1.755 0.436 1.084

Panel B: Emerging countries/regions

ARG BRA HKG IND INS KOR MAL MEX SNG TWN

µJ -0.080

σJ 0.197

λ 0.080

σq 0.998 0.903 0.666 0.531 0.850 0.752 0.695 0.654 0.658 0.483

Skew: model -0.552 -0.759 -0.401 -0.197 -0.703 -0.438 -0.613 -0.558 -0.455 -0.149

Skew: data -0.418 -1.142 -0.463 -0.370 -1.138 0.167 -0.061 -0.918 -0.353 -0.129

ExKurt: model 3.003 4.869 2.515 1.131 4.561 2.614 4.307 3.950 3.002 0.827

ExKurt: data 2.996 4.687 2.586 0.988 4.482 2.838 4.511 3.786 3.071 0.803

be 0.080. Simultaneous jumps among the ten markets are expected to occur once a year.

For both the developed and emerging groups, the theoretic moments reconstructed using

the model parameter estimates are close in magnitude to hence do a reasonably good

job in fitting the moments of the return data.

In the following, we will discuss portfolio choice and the worst probabilities implied

from the model.
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Figure 1: The worst-case density and the reference (normal) density.

6.2 International asset allocation with ambiguity aversion

We compute optimal asset allocations among the two groups of ten countries/regions

across varying ambiguity aversion coefficient φ. The jump-diffusion model without am-

biguity is used as the benchmark for comparison. The risk-free interest rate is set at 5%

per year and the risk aversion coefficient γ is set to be 5.

In Table 2, we present the optimal portfolios for varying degrees of ambiguity aver-

sion. As ambiguity aversion (φ) gets higher, the investor becomes more ambiguity averse.

The total risky investments get abated (since the mean jump size is negative), so do the

exposures to jump risks (π̃q), reflecting the investor’s fear of jump uncertainty. Undoubt-

edly, the total risky investments under ambiguity aversion are less than that without

ambiguity aversion (φ = 0). Note that ϑ∗ is larger for a higher level of ambiguity aver-

sion. Hence (negative) jumps occur more frequently in the worst case for an investor

with a higher level of ambiguity aversion. Consistent with the portfolio results, the worst

density shifts to the negative side as shown in Fig. 1.

44



Table 2: Optimal Portfolios at Different Degrees of Ambiguity Aversion

This table reports optimal portfolio positions among the two groups of 10 coun-
tries/regions at five ambiguity aversion values of φ. The total portfolio weights in each
10 indices given by

∑
i πi are listed in the row “Total”. Exposure to jump risk in the

risky assets is given by π̃q = π>Σq. The worst jump intensity is λϑ∗ where ϑ∗ is al-
so reported in the table. We show in the last column the optimal portfolios and the
exposures to jump risks without ambiguity and ambiguity aversion (φ = 0).

Panel A: Developed countries

φ 200 100 50 10 0

US 0.740 0.738 0.733 0.711 0.667

UK -1.269 -1.271 -1.275 -1.294 -1.333

SW -0.509 -0.506 -0.501 -0.478 -0.431

GE 0.482 0.491 0.507 0.584 0.740

FR -0.246 -0.240 -0.229 -0.175 -0.066

AU -0.147 -0.151 -0.157 -0.188 -0.252

CA -0.395 -0.384 -0.363 -0.265 -0.066

SD 0.585 0.588 0.592 0.611 0.649

JP -0.345 -0.356 -0.377 -0.474 -0.670

NE 0.908 0.912 0.918 0.950 1.014

Total -0.195 -0.179 -0.151 -0.018 0.253

π̃q 0.017 0.033 0.061 0.197 0.471

ϑ∗ 1.486 1.464 1.429 1.268 1

Panel B: Emerging countries/regions

φ 200 100 50 10 0

ARG 0.229 0.230 0.233 0.248 0.276

BRA -0.131 -0.128 -0.123 -0.101 -0.058

HKG -0.111 -0.110 -0.109 -0.106 -0.099

IND 0.293 0.293 0.294 0.297 0.304

INS 0.114 0.116 0.120 0.139 0.176

KOR 0.062 0.064 0.068 0.087 0.123

MAL -0.168 -0.164 -0.155 -0.116 -0.040

MEX 0.462 0.464 0.468 0.485 0.517

SNG -0.487 -0.489 -0.494 -0.514 -0.553

TWN -0.392 -0.394 -0.398 -0.416 -0.451

Total -0.129 -0.117 -0.096 0.004 0.195

π̃q 0.011 0.021 0.039 0.125 0.290

ϑ∗ 1.237 1.226 1.207 1.124 1
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We now examine the economic significance of the differences in the optimal portfolio

weights between the two models with and without ambiguity aversion. To this end, we

let π(1) and π(2) be the optimal portfolios for the investor with ambiguity aversion and

the one without ambiguity aversion, respectively. In particular, certainty equivalent loss

(CEL) is defined as the percentage of initial wealth an investor is willing to give up to

switch from portfolio strategy π(2) to portfolio strategy π(1). Equivalently, CEL solves

the following equation:

J (2)(W, t) = J (1)(W (1− CEL), t), (55)

where the value function J (1)(W, t) associated with π(1) is calculated by Theorem 1. We

evaluate J (2)(W, t) following Flor and Larsen [12]. Specifically,

J (2)(W, t) = Eζ∗

t

[
W 1−γ
T

1− γ

]
, (56)

where WT is the wealth process associated with π(2), and the worst case Radon-Nikodym

derivative ζ∗ is associated with the ambiguity aversion portfolio π(1). That is, J (2) is the

value function when applying π(2) in the model with the (worst case) jump distribution

corresponding to π(1). Since π(1) is optimal to maximize among all possible worst values,

we know J (1)(W, t) ≥ J (2)(W, t) and the CEL defined above is non-negative.

The results are listed in Table 3. As we can see from the table, the certainty equivalent

loss is significant. It can be as large as 95% in a time horizon of 20 years in the emerging

markets. This indicates that a huge loss may be caused by ignoring uncertainty of jumps.

It is interesting to note that the certainty equivalent loss is much larger in the emerging

markets. The reasons may be due to more volatile jumps in the emerging markets (i.e.

jumps size has a larger variance), hence there are more ambiguity in jumps for the

emerging markets and it is more important to consider the ambiguity in the optimal

portfolio in the emerging markets. If we artificially change the jump volatility σJ from
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Table 3: Certainty Equivalent Loss

This table reports the certainty equivalent loss when the investor fails to account for
jump ambiguity and takes the portfolio without ambiguity aversion. The certainty
equivalent loss is possibly incurred when the model encounters the worst case jumps and
the investor applies the (suboptimal) portfolio strategy ignoring jump ambiguity.

Investment horizon (in years)

φ 1 10 20

Panel A: Developed countries

10 0.0017 0.0164 0.0326

50 0.0166 0.1538 0.2840

100 0.0522 0.4152 0.6580

Panel B: Emerging countries/regions

10 0.0092 0.0886 0.1693

50 0.0754 0.5434 0.7915

100 0.1482 0.7989 0.9595

0.197 to 0.06, we find the CEL under φ = 100 becomes 0.0367, 0.3117, 0.5262 in 1, 10,

and 20 years’ investment horizons respectively. Compared to Panel B of Table 3, these

CELs are significantly reduced. The result confirms that jump volatility affects certainty

equivalent loss and explains the difference of CELs between the emerging markets and

the developed markets.

6.3 Comparison with the Parameterized Model

Liu et al. [25] use a parametric approach to choose the worst jump size and jump

intensity. They consider a single stock model with one jump and assume that the jump

intensity is changed to eaλ and the jump size density is changed to ebz−bµJ−
1
2
b2σ2

JΦ(dz)

for a, b ∈ R in an alternative model, where Φ(dz) is the density of Z ∼ N(µJ , σJ) and

Y = eZ − 1 is the jump size of the stock price. Instead of minimizing over all valid

probability measures, they minimize the objective function over the real sets of a and

b. We note that for many values of model parameters this parameterized approach can

generate results close to those by our non-parameterized approach. Panel B of Table 4
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Table 4: Comparison with the Parameterized Model

This table reports optimal portfolios under our non-parameterized model(NonP), the
parameterized model(Para) of Liu et al. [25], and the model without ambiguity (W/A).
The jump intensity in the worst case becomes λϑ∗ in NonP, and becomes λea

∗
in Para.

ARG BRA HKG IND INS KOR MAL MEX SNG TWN

Panel A: φ = 250, γ = 1.1

NonP 1.0318 -0.6048 -0.5043 1.3296 0.5082 0.2732 -0.7835 2.0915 -2.2037 -1.7716

Para 1.0496 -0.5774 -0.4998 1.3337 0.5316 0.2960 -0.7352 2.1123 -2.2287 -1.7940

W/A 1.2005 -0.3452 -0.4621 1.3687 0.7297 0.4894 -0.3270 2.2883 -2.4398 -1.9838

ϑ∗ = 1.2477 , exp(a∗) = 1.5275, b∗ = −1.1255

Panel B: φ = 50, γ = 5

NonP 0.2333 -0.1233 -0.1093 0.2939 0.1201 0.0682 -0.1552 0.4675 -0.4937 -0.3977

Para 0.2333 -0.1232 -0.1093 0.2940 0.1202 0.0682 -0.1550 0.4675 -0.4937 -0.3977

W/A 0.2760 -0.0576 -0.0986 0.3038 0.1761 0.1229 -0.0397 0.5173 -0.5534 -0.4514

ϑ∗ = 1.2066 , exp(a∗) = 1.2076, b∗ = −1.7692

lists an example where the two approaches generate almost the same optimal portfolio.7

In fact, we find that the worst densities under the two models are almost identical and

exp(a∗) is almost equal to ϑ∗ in our model. Hence the worst cases under the two models

are almost identical and not surprised to see almost identical optimal portfolios under

ambiguity in this example.

However, it is not always true that the two models give close results. When γ is

small and φ is large, the two approaches may generate results with large difference.

Panel A of Table 4 lists the optimal portfolios under the two models when φ = 250 and

γ = 1.1. There are clear differences between the allocations of the two optimal portfolios.

Meanwhile, Fig. 2 shows a sharp difference between the two worst densities under the

models. Furthermore, we find that the certainty equivalent losses are significant, namely,

1.99%, 18.18%, and 33.06% for 1, 10, and 20 years’ investments respectively, if the worst

case of the parameterized model is applied when the true model is the worst case of

the non-parameterized model. These results illustrate the essential importance of our

non-parameterized approach.

7We focus on the group of 10 emerging countries/regions for illustration. The other group of 10
developed countries produces qualitatively similar results.
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Figure 2: The worst-case density of our non-parameterized model (NonP), the worst-
case density under the parameterized model (Para), and the reference (normal) density.
φ = 250, γ = 1.1.

7 Conclusion

Solving the optimal dynamic portfolio selection problem for a multi-asset incomplete

market with or without model uncertainty is a daunting task due to the curse of dimen-

sionality. This paper proposes a novel approach to the intertemporal portfolio selection

problem in jump-diffusion models where the investor is averse not only to risk of loss but

also to model uncertainty. More specifically, based on the duality-martingale methods

and the minimax theorem, we evaluate the probability of the worst case scenario and

the indirect value function by solving a pathwise optimization problem. We also develop

an orthogonal decomposition method to obtain the optimal portfolio in the worst case.

One appealing feature of our approach is that our method can deal with a large number

of assets and state variables in a model with ambiguity aversion to jump risks. Our

approach also circumvents the problem of dimensionality.

The theoretical results show how an ambiguity averse investor fears ambiguous jumps
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by attaching more weights to the likelihood of adverse events. Our calibration exercise in

international markets illustrates that jump uncertainty significantly affects the optimal

portfolio weights and the certainty equivalent loss may be large if the uncertainty is

ignored or the alternative probability laws are confined to be parametric.
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Appendices

A Proof of Proposition 1

We separate the proof of Proposition 1 into several lemmas.

Lemma A1

Eζ
t

[
ln

(
ζ

(k)
t+∆t

ζ
(k)
t

)]
= λk

∫ t+∆t

t

∫
Ak

Eζ
t [ϑk(s)ψk(s, z) ln(ϑk(s)ψk(s, z))+1−ϑk(s)ψk(s, z)]Φk(dz)ds.

Proof. Consider equation (4) under the probability P (ζ) with which the k-th jump
intensity λk and density function Φk(dz) are changed into ϑkλk and ψk(z)Φk(dz) in the
alternative model, respectively. We rewrite equation (4) as:

dζ
(k)
t =

∫
Ak

(ϑk(t)ψk(t, z)− 1)2ζ
(k)
t− λkΦk(dz)dt

+

∫
Ak

(ϑk(t)ψk(t, z)− 1)ζ
(k)
t− q̃k(dt, dz),

where

q̃k(dt, dz) = dNk(t)− λkϑk(t)ψk(t, z)Φk(dz)dt, k = 1, ..., n− d.

In particular, the above terms are martingale differentials under the probability P (ζ).
Applying Ito’s lemma to the function f(x) = ln x and the above equation gives

d ln(ζ
(k)
t ) =

∫
Ak

(ϑk(t)ψk(t, z)− 1)2λkΦk(dz)dt

+λkϑk(t)

∫
Ak

[ln(ζ
(k)
t− + ζ

(k)
t− (ϑk(t)ψk(t, z)− 1))− ln(ζ

(k)
t− )

−(ϑk(t)ψk(t, z)− 1)]ψk(t, z)Φk(dz)dt

+

∫
Ak

[ln(ζ
(k)
t− + ζ

(k)
t− (ϑk(t)ψk(t, z)− 1))− ln(ζ

(k)
t− )]q̃k(dt, dz)

= λk

∫
Ak

[ϑk(t)ψk(t, z) ln(ϑk(t)ψk(t, z)) + 1− ϑk(t)ψk(t, z)]Φk(dz)dt

+

∫
Ak

ln(ϑk(t)ψk(t, z))q̃k(dt, dz).

Thus, we have for k = 1, 2, ..., n− d

Eζ
t

[
ln

(
ζ

(k)
t+∆t

ζ
(k)
t

)]
= λk

∫ t+∆t

t

∫
Ak

Eζ
t [ϑk(s)ψk(s, z) ln(ϑk(s)ψk(s, z))+1−ϑk(s)ψk(s, z)]Φk(dz)ds.
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We now make the following assumption:

Assumption A For each vector (ϑ, ψ) ∈ Θ × Ψ, we assume that it is continuous with
respect to t ∈ [0, T ] and for the corresponding Hs, there exists a positive constant CH
such that supt∈[0,T ] E

ζ
t (sups∈[0,T ] |Hs|) ≤ CH <∞.8

This assumption seems unrestrictive because the state variable vector Xt is contin-
uous with respect to t ∈ [0, T ] and thus the optimal solution (ϑ∗, ψ∗) given by (32) is
continuous with respect to t ∈ [0, T ] and bounded. This implies the corresponding Hs

is bounded, leading to the second condition.
We now turn to the proof of (10). Recall Λ(x) = (1 − γ)x and γ > 1. Then, from

Lemma A1, we have

Λ
(
Eζ
t (Ut+∆t)

)
Eζ
t (Ut+∆t)

n−d∑
k=1

1

φk
Eζ
t

[
ln

(
ζ

(k)
t+∆t

ζ
(k)
t

)]

= (1− γ)
n−d∑
k=1

λk
φk

∫ t+∆t

t

∫
Ak

Eζ
t [ϑk(s)ψk(s, z) ln(ϑkψk(s, z)) + 1− ϑk(s)ψk(s, z)]Φk(dz)ds

≡
∫ t+∆t

t

Eζ
t [H(ζs)]ds ≡

∫ t+∆t

t

Eζ
t [Hs]ds.

It is evident that H(ξt) ≤ 0 because x lnx + 1− x ≥ 0 for x > 0 and 1− γ < 0. Thus,
following Jin and Zhang [19], we have

Λ
(
Eζ
t (Ut+∆t)

) n−d∑
k=1

1

φk
Eζ
t

[
ln

(
ζ

(k)
t+∆t

ζ
(k)
t

)]
+ Eζ

t (Ut+∆t)

=

(
1 +

∫ t+∆t

t

Eζ
t [Hs]ds

)
Eζ
t (Ut+∆t).

This result suggests that for a givenH and a small enough ∆t, 1+
∫ t+∆t

t
Eζ
t [Hs]dsmust be

positive almost surely in order that the above function is a well-defined utility function.
Or equivalently,

∫ t+∆t

t
Eζ
t [|Hs|]ds < 1 for a small enough ∆t. This is guaranteed by the

second condition in Assumption A because∫ t+∆t

t

Eζ
t [|Hs|]ds ≤

∫ t+∆t

t

sup
t∈[0,T ]

Eζ
t ( sup
s∈[0,T ]

|Hs|)ds ≤ CH∆t.

Note that by the above result, for sufficiently small ∆t, 1+
∫ t+∆t

t
Eζ
t [Hs]ds = e

∫ t+∆t
t Eζt [Hs]ds+O((∆t)2)

since ln(1+x) = x+O(x2) for small x. Plugging Ut+∆t = e
∫ t+2∆t
t+∆t Eζt+∆t[Hs]ds+O((∆t)2)Eζ

t+∆t(Ut+2∆t)

8It is worth mentioning that, as shown below, the second assumption is made for the proof of (10)
and the main result (11) still holds true without this assumption.
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into the equation above, we have

Ut = Eζ
t (e

∫ t+∆t
t Eζt [Hs]ds+O((∆t)2)e

∫ t+2∆t
t+∆t Eζt+∆t[Hs]ds+O((∆t)2)Eζ

t+∆t(Ut+2∆t))

= Eζ
t (e

∫ t+∆t
t Eζt [Hs]ds+

∫ t+2∆t
t+∆t Eζt+∆t[Hs]ds+2O((∆t)2)Ut+2∆t)

...

= Eζ
t (e

∫ t+∆t
t Eζt [Hs]ds+...+

∫ T
T−∆tE

ζ
T−∆t[Hs]ds+O(∆t)UT ).

Note that for a fixed s ∈ [0, T ], limt→s,t<sE
ζ
t [Hs] = Eζ

s−[Hs] = Hs since, by Assumption
A, H is a continuous function. Hence, by the dominated convergence theorem on the
interval [0, T ], we have

lim
∆t→0

[∫ t+∆t

t

Eζ
t [Hs]ds+ ...+

∫ T

T−∆t

Eζ
T−∆t[Hs]ds

]
=

∫ T

t

Hsds,

almost surely since, by Assumption A, Eζ
t [Hs] ≤ CH for all t, s ∈ [0, T ]. Thus, by the

dominated convergence theorem, we can derive the continuous-time version of the utility
function which is given by

Ut = inf
ζ

Eζ
t

[
e
∫ T
t HsdsUT

]
,

since Hs ≤ 0 and Eζ
t [|UT |] <∞.

For illustrative convenience, we suppose n− d ≡ 1, that is, there is only one type of
jump in the remainder of this proof. We omit the subscript k from now on by letting,
for example, λk ≡ λ, Ak ≡ A. Furthermore, we use the upper case Z to denote random
jump size and the lower case z to denote a particular realization of Z.

In the following, we prepare for the proof of (11) by using a minimax theorem given
in Lemma A5 below. For this purpose, we now verify the conditions of the lemma by
presenting Lemma A2, A3 and A4. Given a constant C > 0, we define

Ψ̃C =
{
ϑψ
∣∣∣(ϑ, ψ) ∈ Θ×Ψ, ϑ(s)ψ(s, z) ≤ C, ∀s ∈ [0, T ], ∀z ∈ A

}
.

Lemma A2 Given a sequence {ϑn(s)ψn(s, Z), n = 1, 2, ...} in Ψ̃C, there exists a se-

quence of convex combination ϑ̃n(s)ψ̃n(s, Z) ∈ conv{ϑn(s)ψn(s, Z), ϑn+1(s)ψn+1(s, Z), ...} ∈
Ψ̃C such that {ϑ̃n(s)ψ̃n(s, Z)} converges P × l a.s.to a ϑ0(s)ψ0(s, Z) ∈ Ψ̃C and {ϑ̃n(t+

∆t)ψ̃n(t + ∆t, Z)} converges P a.s.to a ϑ0(t + ∆t)ψ0(t + ∆t, Z), where l denotes the
Lebesgue measure on the interval [0, T ].

Proof. For the sequence {ϑn(s)ψn(s, Z)} in Ψ̃C, like the proof of Lemma 3.2 in Schied
and Wu [31], by Lemma A1.1 of Delbaen and Schachermayer [11], there exists a sequence

of convex combination ϑ̄n(s)ψ̄n(s, Z) ∈ conv{ϑn(s)ψn(s, Z), ϑn+1(s)ψn+1(s, Z), ...} ∈ Ψ̃C

which converges P × l a.s.to a ϑ0(s)ψ0(s, Z) ∈ Ψ̃k. In the same manner, considering

the sequence {ϑ̄n(t + ∆t)ψ̄n(t + ∆t, Z)}, there is a sequence ϑ̃n(t + ∆t)ψ̃n(t + ∆t, Z) ∈
conv{ϑ̄n(t+ ∆t)ψ̄n(t+ ∆t, Z), ϑ̄n+1(t+ ∆t)ψ̄n+1(t+ ∆t, Z), ...} which converges P a.s.to

a ϑ0(t + ∆t)ψ0(t + ∆t, z). Furthermore, {ϑ̃n(s)ψ̃n(s, Z)} converges P × l a.s.to a

ϑ0(s)ψ0(s, Z) since {ϑ̃n(s)ψ̃n(s, Z)} is a convex combination of {ϑ̄n(s)ψ̄n(s, Z)}.
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We let ∆N(t) = N(t + ∆t) − N(t) denote the number of jumps in the interval

(t, t+ ∆t]. For ϑ(s)ψ(s) ∈ Ψ̃C , we define

H̃t =

(
1 +Ht∆t+ λ

∫ t+∆t

t

∫
A

(1− ϑ(s)ψ(s, z))Φ(dz)ds

)
1(∆N(t) = 0)

+ϑ(t+ ∆t)ψ(t+ ∆t, Z)1(∆N(t) = 1). (A.1)

and, for δ > 0,

Φ̃C = Φ̃C(δ) =

{
H̃t

∣∣∣ϑ(s)ψ(s) ∈ Ψ̃C , sup
|t1−t2|≤∆t

|Ht1 −Ht2| ≤ δ

}
,

where 1(·) denotes the indicator function. And moreover, we use
¯̃
ΦC to denote the weak

closure of the set Φ̃C in L1(P ). The following result is Theorem 7.5.10 in Yan [34].

Lemma A3 Let H be a subset of L1(P ). Then the following two conditions are equiv-
alent:

(1) H is a uniformly integrable family;
(2) For any sequence {Xn} in H, there exists a subsequence {Xnk} of {Xn} and a

random variable X0 ∈ L1(P ) such that {Xnk} weakly converges to X0 in L1(P ), that is,
limk→∞E(XnkY ) = E(X0Y ) for any bounded random variable Y .
Proof. See Theorem 7.5.10 in Yan [34].

Lemma A4 The set
¯̃
ΦC is weakly compact in L1(P ).

Proof. Like Lemma 3.2 in Schied and Wu [31], we use James’ theorem to prove this

result. For this, we let F ∈ L∞(P ) and {H̃n,t ∈
¯̃
ΦC} such that E[H̃n,tF ] tends to

sup
H̃t∈ ¯̃

ΦC
E[H̃tF ]. Without loss of the generality, we assume that {H̃n,t ∈ Φ̃C}. Note

that the set Φ̃C is bounded. Hence it is uniformly integrable. Thus, by Lemma A3, there
is a subsequence {H̃nk,t} of {H̃n,t} such that it weakly converges to H̃0,t in L1(P ). This

implies that H̃0,t ∈
¯̃
ΦC and E[H̃0,tF ] = sup

H̃t∈ ¯̃
Φk

E[H̃tF ]. That is, the continuous linear

functional E[H̃tF ] attains its sup on
¯̃
ΦC. As a result, by the James’ theorem, the set

¯̃
ΦC

is weakly compact in L1(P ).

We now turn to minimax results. A function f : X × Y → R is said to be convex-
concave like on X × Y if, for α ∈ [0, 1],

(1) for x1 and x2 in X, there exists x3 in X such that

f(x3, y) ≤ αf(x1, y) + (1− α)f(x2, y)

for all y in Y ; and
(2) for y1 and y2 in Y , there exists y3 in Y such that

f(x, y3) ≥ αf(x, y1) + (1− α)f(x, y2)

for all x in X.
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The following result plays a key role in the proof of Proposition 1.

Lemma A5 Suppose X and Y are non-empty sets with f convex-concave like on X×Y .
Suppose that X is compact and f(·, y) is lower semicontinuous on X for each y in Y .
Then

min
X

sup
Y
f(x, y) = sup

Y
min
X

f(x, y).

Proof. See Theorem A of Borwein and Zhuang [6].

Lemma A6 For ε > 0, the function Et[H̃tU
ε
t+∆t] is convex-concave like on

¯̃
ΦC×W(w0),

where U ε
t is defined by (7) with U ε

T = (WT+ε)1−γ

1−γ and we also replace
∫ t+∆t

t
Hsds with

Ht∆t.
Proof. Note that the set W(w0) is convex and H̃t is positive when ∆t is small enough.

Hence, the function Et[H̃tU
ε
t+∆t] is concave on W(w0) for all H̃t ∈

¯̃
ΦC. We now show

the first condition of a convex-concave like function. For this, let H̃
(1)
t , H̃

(2)
t ∈ ¯̃

ΦC and

two sequences {H̃(1)
n,t} and {H̃(2)

n,t} in Φ̃C such that {H̃(1)
n,t} and {H̃(2)

n,t} weakly converge to

H̃
(1)
t and H̃

(2)
t , respectively. In particular,

lim
n→∞

Et[(αH̃
(1)
n,t + (1− α)H̃

(2)
n,t )U

ε
t+∆t]

= Et[(αH̃
(1)
t + (1− α)H̃

(2)
t )U ε

t+∆t],

since U ε
t+∆t is bounded. And thus, given ε0 > 0, there exists n0 such that for n ≥ n0,

Et[(αH̃
(1)
n,t + (1− α)H̃

(2)
n,t )U

ε
t+∆t]

≤ Et[(αH̃
(1)
t + (1− α)H̃

(2)
t )U ε

t+∆t] + ε0.

We let ϑ
(1)
n ψ

(1)
n and ϑ

(2)
n ψ

(2)
n define H̃

(1)
n,t and H̃

(2)
n,t , respectively. Furthermore, we let H̃

(3)
n,t

be defined by αϑ
(1)
n ψ

(1)
n + (1 − α)ϑ

(2)
n ψ

(2)
n = ϑ

(3)
n ψ

(3)
n . Note that Et[H̃tU

ε
t+∆t] is a convex

function with respect to ϑnψn since from the definition (A.1), H̃t is a concave function
with respect to ϑnψn and U ε

t+∆t is negative. Hence we have

Et[H̃
(3)
n,tU

ε
t+∆t] ≤ Et[(αH̃

(1)
n,t + (1− α)H̃

(2)
n,t )U

ε
t+∆t],

Applying Lemma A2 to the sequence ϑ
(3)
n ψ

(3)
n , we can find there a sequence of convex

combination ϑ
(4)
n ψ

(4)
n ∈ conv{ϑ(3)

n ψ
(3)
n , ϑ

(3)
n+1ψ

(3)
n+1, ...} ∈ Ψ̃C such that {ϑ(4)

n ψ
(4)
n } converges

P × l a.s.to a ϑ
(4)
0 ψ

(4)
0 and {ϑ(4)

n (t + ∆t)ψ
(4)
n (t + ∆t)} converges P a.s.to a ϑ

(4)
0 (t +

∆t)ψ
(4)
0 (t+ ∆t).

Finally, by noticing that the sequence {ϑ(4)
n ψ

(4)
n } is bounded, the corresponding {H̃(4)

n,t}
is bounded. And thus, for ϑ

(4)
0 (s)ψ

(4)
0 (s), the corresponding H̃

(4)
t ∈

¯̃
ΦC and

Et[H̃
(4)
t U ε

t+∆t] ≤ Et[(αH̃
(1)
t + (1− α)H̃

(2)
t )U ε

t+∆t],
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for all WT ∈ W(w0), completing the proof.

Lemma A7 Given ∆t > 0, δ > 0 and ε > 0, we have

sup
WT∈W(w0)

inf
H̃t∈ ¯̃

ΦC

Et[H̃tU
ε
t+∆t] = inf

H̃t∈ ¯̃
ΦC

sup
WT∈W(w0)

Et[H̃tU
ε
t+∆t].

Proof. We get the result by using Lemma A4, Lemma A5 and Lemma A6. :

Next we show that

J(t,Wt, Xt) = sup
W∈W(w0)

Ut

= sup
WT∈W(w0)

inf
ζ

Eζ
t

[
e
∫ T
t Hsdsu(WT )

]
= inf

ζ
sup

WT∈W(w0)

Eζ
t

[
e
∫ T
t Hsdsu(WT )

]
.

As in the proof of Lemma 3.4 of Schied and Wu [31], we have

U(w0 + ε) ≥ sup
WT∈W(w0)

inf
ζ

Eζ
t

[
e
∫ T
t Hsdsu(WT + ε)

]
Define

H̄(∆t) = (Ht + ...+HT−∆t)∆t.

We let ζ∗ denote the optimal solution to the above optimal problem on the right hand
side. Given the optimal ϑ∗ψ∗ and the corresponding H∗t , by Assumption A, for any
δ > 0 and ε1 > 0, there exists a ∆t∗ > 0 and C > 0 such that

P

{
sup

|t1−t2|≤∆t∗
|H∗t1 −H

∗
t2
| ≥ δ, or sup

t∈[0,T ]

ϑ∗(t)ψ∗(t) ≥ C

}
≤ ε1.

Then, by letting h1(H,∆t∗) = sup|t1−t2|≤∆t∗ |Ht1−Ht2| and h2(ϑ, ψ) = supt∈[0,T ] ϑ(t)ψ(t),
we have

U(w0 + ε)

≥ sup
WT∈W(w0)

Eζ∗

t

[
e
∫ T
t H∗s dsu(WT + ε)

]
≥ sup

WT∈W(w0)

Eζ∗

t

[
e
∫ T
t H∗s dsu(WT + ε) : h1(H∗,∆t∗) ≤ δ, and, h2(ϑ∗, ψ∗) ≤ C

]
− ε2

≥ sup
WT∈W(w0)

Eζ∗

t

[
eH̄
∗(∆t∗)u(WT + ε) : h1(H∗,∆t∗) ≤ δ, and, h2(ϑ∗, ψ∗) ≤ C

]
− ε3

≥ sup
WT∈W(w0)

inf
H̃∈ ¯̃

ΦC(δ)

Eζ
t

[
eH̄(∆t∗)u(WT + ε)

]
− ε3,

where the last inequality follows from the definition of the set
¯̃
ΦC(δ). The variables

εi, i = 1, 2, 3 above and εi, i = 4, 5, 6 below can be made arbitrarily small by letting ∆t∗
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tend to zero. We will show that∣∣∣ sup
WT∈W(w0)

inf
H̃∈ ¯̃

ΦC(δ)

Eζ
t

[
eH̄(∆t∗)u(WT + ε)

]
− inf

H̃∈ ¯̃
ΦC(δ)

sup
WT∈W(w0)

Eζ
t

[
eH̄(∆t∗)u(WT + ε)

] ∣∣∣ ≤ ε4, (A.2)

and

inf
H̃∈ ¯̃

ΦC(δ)

sup
WT∈W(w0)

Eζ
t

[
eH̄(∆t∗)u(WT + ε)

]
= inf

H̃∈Φ̃C(δ)
sup

WT∈W(w0)

Eζ
t

[
eH̄(∆t∗)u(WT + ε)

]
. (A.3)

Thus,

U(w0 + ε) ≥ inf
H̃∈ ¯̃

ΦC(δ)

sup
WT∈W(w0)

Eζ
t

[
eH̄(∆t∗)u(WT + ε)

]
− ε5

= inf
H̃∈Φ̃C(δ)

sup
WT∈W(w0)

Eζ
t

[
eH̄(∆t∗)u(WT + ε)

]
− ε5

≥ inf
H̃∈Φ̃C(δ)

sup
WT∈W(w0)

Eζ
t

[
e
∫ T
t Hsdsu(WT + ε)

]
− ε6

≥ inf
ζ

sup
WT∈W(w0)

Eζ
t

[
e
∫ T
t Hsdsu(WT + ε)

]
− ε6

≥ inf
ζ

sup
WT∈W(w0)

Eζ
t

[
e
∫ T
t Hsdsu(WT )

]
− ε6

≥ sup
WT∈W(w0)

inf
ζ

Eζ
t

[
e
∫ T
t Hsdsu(WT )

]
− ε6

= U(w0)− ε6.

Furthermore, by using the same manner as in Theorem 2.2 and Lemma 3.1 in Schied
and Wu [31], we can show that the value function U(x) is concave and continuous. As
a result, by letting ∆t, δ and ε go to zero, we obtain

U(w0) = sup
WT∈W(w0)

inf
ζ

Eζ
t

[
e
∫ T
t Hsdsu(WT )

]
= inf

ζ
sup

WT∈W(w0)

Eζ
t

[
e
∫ T
t Hsdsu(WT )

]
.

The following result is used in the proof of (A.2) and (A.3).

Lemma A8 We have

Et

(
ζt+∆t

ζt
U ε
t+∆t1(∆N(t) ≥ 2)

)
≤ ε1−γ

γ − 1
exp

(
(2 + C3)λ

3

)
(∆t)

4
3 .
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Proof. From the proof of Lemma A1, we have

d ln(ζt) = λ

∫
A

[1− ϑ(t)ψ(t, z)]Φ(dz)dt+

∫
A

ln(ϑ(t)ψ(t, z))dN(t),

implying that

ζt+∆t

ζt
= exp

(
λ

∫
A

[1− ϑ(t)ψ(t, z)]Φ(dz)dt+

∫
A

ln(ϑ(t)ψ(t, z))dN(t)

)
.

Note that

Et

{
exp

(
λ

∫
A

[1− ϑ3(t)ψ3(t, z)]Φ(dz)dt+

∫
A

ln[ϑ3(t)ψ3(t, z)]dN(t)

)}
= 1.

Hence,

Et

(
ζt+∆t

ζt

)3

= Et

{
exp

(
3λ

∫
A

[1− ϑ(t)ψ(t, z)]Φ(dz)dt+

∫
A

ln[ϑ3(t)ψ3(t, z)]dN(t)

)}
= Et

{
exp

(
λ

∫
A

[2− 3ϑ(t)ψ(t, z) + ϑ3(t)ψ3(t, z)]Φ(dz)dt

)}
≤ exp

(
(2 + C3)λ

)
.

As a result ∣∣∣∣Et

(
ζt+∆t

ζt
U ε
t+∆t1(∆N(t) ≥ 2)

)∣∣∣∣
≤ ε1−γ

γ − 1

∣∣∣∣Et

(
ζt+∆t

ζt
1(∆N(t) ≥ 2)

)∣∣∣∣
≤ ε1−γ

γ − 1

(
Et

(
ζt+∆t

ζt

)3
) 1

3

(P (∆N(t) ≥ 2))
2
3

≤ ε1−γ

γ − 1
exp

(
(2 + C3)λ

3

)
(∆t)

4
3

We now turn to proving (A.2). Note that, by dynamic programming, the problem
“ supWT∈W(w0) inf

H̃∈ ¯̃
ΦC(δ)

” in (A.2) can be approximately solved below with total ap-

58



proximation error O(∆t).

sup
WT∈W(w0)

inf
H̃∈ ¯̃

ΦC(δ)

Λ
(
Eζ
t (U

ε
t+∆t)

)
Ht∆t+ Eζ

t (U
ε
t+∆t)

= sup
WT∈W(w0)

inf
H̃∈ ¯̃

ΦC(δ)

(1 +Ht∆t)E
ζ
t (Ut+∆t) = sup

π
inf
ζ

(1 +Ht∆t)Et

(
ζt+∆t

ζt
U ε
t+∆t

)

= sup
WT∈W(w0)

inf
H̃∈ ¯̃

ΦC(δ)

(1 +Ht∆t)Et

eλ ∫ t+∆t
t

∫
A(1−ϑψ(z))Φ(dz)ds

∆N(t)∏
i=1

ϑψ(zi)U
ε
t+∆t


= sup

WT∈W(w0)

inf
H̃∈ ¯̃

ΦC(δ)

(1 +Ht∆t)Et

[
eλ
∫ t+∆t
t

∫
A(1−ϑψ(z))Φ(dz)dsU ε

t+∆t|∆N(t) = 0
]
e−λ∆t

+(1 +Ht∆t)Et

[
eλ
∫ t+∆t
t

∫
A(1−ϑψ(z))Φ(dz)dsϑψ(z1)U ε

t+∆t|∆N(t) = 1
]

(λ∆t) e−λ∆t

+(1 +Ht∆t)Et

(
ζt+∆t

ζt
U ε
t+∆t1(∆N(t) ≥ 2)

)
.

Thus, by Lemma A8,

sup
WT∈W(w0)

inf
H̃∈ ¯̃

ΦC(δ)

Λ
(
Eζ
t (U

ε
t+∆t)

)
Ht∆t+ Eζ

t (U
ε
t+∆t)

= sup
WT∈W(w0)

inf
H̃∈ ¯̃

ΦC(δ)

{
Et

[(
1 +Ht∆t+ λ

∫ t+∆t

t

∫
A

(1− ϑψ(z))Φ(dz)ds

)
U ε
t+∆t|∆N(t) = 0

]
e−λ∆t

+Et

[
ϑψ(z1)U ε

t+∆t|∆N(t) = 1
]
λ∆te−λ∆t

}
+ o(∆t)

= sup
WT∈W(w0)

inf
H̃∈ ¯̃

ΦC(δ)

Et

{[(
1 +Ht∆t+ λ

∫ t+∆t

t

∫
A

(1− ϑ(s)ψ(s, z))Φ(dz)ds

)
1(∆N(t) = 0)

+ϑ(t+ ∆t)ψ(t+ ∆t, Z)1(∆N(t) = 1)]U ε
t+∆t

}
+ o(∆t)

= sup
WT∈W(w0)

inf
H̃∈ ¯̃

ΦC(δ)

Et[H̃tU
ε
t+∆t] + o(∆t).

Likewise, the problem “ inf
H̃∈ ¯̃

ΦC(δ)
supWT∈W(w0) ” in (A.2) can be approximately solved

by the following dynamic programing with total approximation error O(∆t):

inf
H̃∈ ¯̃

ΦC(δ)

sup
WT∈W(w0)

Λ
(
Eζ
t (U

ε
t+∆t)

)
Ht∆t+ Eζ

t (Ut+∆t)

= inf
H̃∈ ¯̃

ΦC(δ)

sup
WT∈W(w0)

Et[H̃tU
ε
t+∆t] + o(∆t),

implying (A.2) by Lemma A7. The result (A.3) follows from the facts that
¯̃
ΦC(δ) is the

weak closure of Φ̃C(δ) and Ut+∆t(WT + ε) is bounded.
This completes the proof of (11). �
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B Results for Logarithm Utility Function

For the logarithm utility function, we let Γ(x) = 1 as suggested by the literature. Then
we have the following proposition corresponding to Proposition 1 for the power utility
function. (For illustration, we suppose k = 1, i.e., only one jump, and the subscriptions
regarding k are ignored.)

Proposition 1’ When u(x) = ln(x), we let Γ(x) = 1, then the continuous-time
version of the utility in equation (7) is given by

Ut = inf
ζ

Eζ
t

[∫ T

t

Hsds+ ln(WT )

]
,

where H = λ
φ

∫
A

[ϑψ ln(ϑψ) + 1− ϑψ]Φ(dz).

To prove (11) for u(x) = ln(x), we need to slightly modify the method of proof of the
result (11) in Proposition 1 for CRRA utility functions because, unlike a CRRA utility
function with γ > 1, the log utility function ln(WT ) is unbounded above. Specifically,
(11) can be recovered for the log utility function ln(WT ) by using the following results:

sup
ξ∈Qζ

inf
ζ

Eζ
t

[∫ T

t

Hsds+ ln(WT )

]
= sup

n
sup
ξ∈Qζ

inf
ζ

Eζ
t

[∫ T

t

Hsds+ min{ln(WT ), n}
]
,

inf
ζ

sup
ξ∈Qζ

Eζ
t

[∫ T

t

Hsds+ ln(WT )

]
= sup

n
inf
ζ

sup
ξ∈Qζ

Eζ
t

[∫ T

t

Hsds+ min{ln(WT ), n}
]
.

Moreover, following the proof for CRRA utility functions with γ > 1 in Appendix A, we
can show that for any n

sup
ξ∈Qζ

inf
ζ

Eζ
t

[∫ T

t

Hsds+ min{ln(WT ), n}
]

= inf
ζ

sup
ξ∈Qζ

Eζ
t

[∫ T

t

Hsds+ min{ln(WT ), n}
]
.

Then we have a theorem corresponding to Theorem 1.
Theorem 1’ When u(x) = ln(x), we have

J(t,Wt, Xt) = ln(Wt) + Et

[
1

2

∫ T

t

||θb||2ds+

∫ T

t

r(Xs)ds−
∫ T

t

inf
c
G(s, c)ds

]
,

where

G(s, c) = −cθq − λ

φ

∫
A

(1− eχ(z,c))Φ(s, dz),

and
χ(z, c) = (1 + cz)−φ.

The worst probability is given by the same formulas as in Theorem 1.
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Proof. We prove Theorem 1’ briefly. First, applying the convex conjugate approach
after Lemma 1, we obtain

J(t,Wt, Xt) = ln(Wt) + inf
ζ

inf
ξ∈Qζ

Eζ
t

[∫ T

t

Hsds− ln(ξδ) +

∫ T

t

r(Xs)ds

]
.

Hence, the objective function in the optimization (25) is rewritten as:

f(z, θ(t), ϕ(z), ϑ(t), ψ(z))

= −x1(z) + x2(z) ln(x1(z)) + x2(z)− x2(z) ln(x2(z))− 1

φ
(x2(z) ln(x2(z)) + 1− x2(z)) .

The definition of g0 in (29) becomes:

g0(x) = −x1 + x2 ln(x1) + x2 − x2 ln(x2)− 1

φ
(x2 ln(x2) + 1− x2),

if x1 ≥ 0, x2 ≥ 0, and −∞ otherwise. Then corresponding to (32), we have

x̂1 = x2(1 + cz)−1,

x̂2 = (1 + cz)−φk ,

and

inf
x1,x2

cx1z − g0(x) =
1

φ
(1− (1 + cz)−φ).

Corresponding to Lemma 4, we have

sup
(x1,x2)

∫
A

−x1(z) + x2(z) ln(x1(z)) + x2(z)− x2(z) ln(x2(z))

− 1

φ
[x2(z) ln(x2(z)) + 1− x2(z)]Φ(dz)

= inf
c
−cθ

q

λ
− 1

φ

∫
A

(1− (1 + cz)−φ)Φ(dz).

If we define eχ(c,z) = (1+cz)−φ, then the worst probability for the logarithm utility is
given by the same expressions as (15) and the equation before (15) in Theorem 1, where
c∗ solves the minimization problem in the above. This completes the proof.
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