28,113 research outputs found

    c-trie++: A Dynamic Trie Tailored for Fast Prefix Searches

    Full text link
    Given a dynamic set KK of kk strings of total length nn whose characters are drawn from an alphabet of size σ\sigma, a keyword dictionary is a data structure built on KK that provides locate, prefix search, and update operations on KK. Under the assumption that α=w/lgâĄÏƒ\alpha = w / \lg \sigma characters fit into a single machine word ww, we propose a keyword dictionary that represents KK in nlgâĄÏƒ+Θ(klg⁥n)n \lg \sigma + \Theta(k \lg n) bits of space, supporting all operations in O(m/α+lg⁥α)O(m / \alpha + \lg \alpha) expected time on an input string of length mm in the word RAM model. This data structure is underlined with an exhaustive practical evaluation, highlighting the practical usefulness of the proposed data structure, especially for prefix searches - one of the most elementary keyword dictionary operations

    Network service chaining with efficient network function mapping based on service decompositions

    Get PDF
    Network Service Chaining (NSC) is a service concept which promises increased flexibility and cost-efficiency for future carrier networks. The two recent developments, Network Function Virtualization (NFV) and Software-Defined Networking (SDN), are opportunities for service providers to simplify the service chaining and provisioning process and reduce the cost (in CAPEX and OPEX) while introducing new services as well. One of the challenging tasks regarding NFV-based services is to efficiently map them to the components of a physical network based on the services specifications/constraints. In this paper, we propose an efficient cost-effective algorithm to map NSCs composed of Network Functions (NF) to the network infrastructure while taking possible decompositions of NFs into account. NF decomposition refers to converting an abstract NF to more refined NFs interconnected in form of a graph with the same external interfaces as the higher-level NF. The proposed algorithm tries to minimize the cost of the mapping based on the NSCs requirements and infrastructure capabilities by making a reasonable selection of the NFs decompositions. Our experimental evaluations show that the proposed scheme increases the acceptance ratio significantly while decreasing the mapping cost in the long run, compared to schemes in which NF decompositions are selected randomly

    Design techniques for low-power systems

    Get PDF
    Portable products are being used increasingly. Because these systems are battery powered, reducing power consumption is vital. In this report we give the properties of low-power design and techniques to exploit them on the architecture of the system. We focus on: minimizing capacitance, avoiding unnecessary and wasteful activity, and reducing voltage and frequency. We review energy reduction techniques in the architecture and design of a hand-held computer and the wireless communication system including error control, system decomposition, communication and MAC protocols, and low-power short range networks

    Optimal Path-Decomposition of Tries

    Get PDF
    In this thesis, we consider the path-decomposition representation of prefix trees. We show that given query probabilities for every word in the prefix tree, the heavy-path strategy produces the optimal trie with respect to the number of node accesses. We show how to implement the heavy-path strategy in O(N) time for a trie containing n words with total length N. To prove this result, we show a complete characterization of the choices made by the optimal decomposition strategy. Using this characterization, we describe how to efficiently support dynamic operations on the path-decomposed trie while preserving the optimality in O(sigma * |w|) time for an alphabet size of sigma and a word length of |w|. We also give entropy-based bounds of the node accesses per query for their respective probabilities. Finally, we show theoretical and experimental results on the performance of heavy-path versus max-score, another popular path-decomposition strategy

    Practical Reasoning for Very Expressive Description Logics

    Full text link
    Description Logics (DLs) are a family of knowledge representation formalisms mainly characterised by constructors to build complex concepts and roles from atomic ones. Expressive role constructors are important in many applications, but can be computationally problematical. We present an algorithm that decides satisfiability of the DL ALC extended with transitive and inverse roles and functional restrictions with respect to general concept inclusion axioms and role hierarchies; early experiments indicate that this algorithm is well-suited for implementation. Additionally, we show that ALC extended with just transitive and inverse roles is still in PSPACE. We investigate the limits of decidability for this family of DLs, showing that relaxing the constraints placed on the kinds of roles used in number restrictions leads to the undecidability of all inference problems. Finally, we describe a number of optimisation techniques that are crucial in obtaining implementations of the decision procedures, which, despite the worst-case complexity of the problem, exhibit good performance with real-life problems

    Virtual Network Embedding Approximations: Leveraging Randomized Rounding

    Get PDF
    © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.The Virtual Network Embedding Problem (VNEP) captures the essence of many resource allocation problems. In the VNEP, customers request resources in the form of Virtual Networks. An embedding of a virtual network on a shared physical infrastructure is the joint mapping of (virtual) nodes to physical servers together with the mapping of (virtual) edges onto paths in the physical network connecting the respective servers. This work initiates the study of approximation algorithms for the VNEP for general request graphs. Concretely, we study the offline setting with admission control: given multiple requests, the task is to embed the most profitable subset while not exceeding resource capacities. Our approximation is based on the randomized rounding of Linear Programming (LP) solutions. Interestingly, we uncover that the standard LP formulation for the VNEP exhibits an inherent structural deficit when considering general virtual network topologies: its solutions cannot be decomposed into valid embeddings. In turn, focusing on the class of cactus request graphs, we devise a novel LP formulation, whose solutions can be decomposed. Proving performance guarantees of our rounding scheme, we obtain the first approximation algorithm for the VNEP in the resource augmentation model. We propose different types of rounding heuristics and evaluate their performance in an extensive computational study. Our results indicate that good solutions can be achieved even without resource augmentations. Specifically, heuristical rounding achieves 77.2% of the baseline’s profit on average while respecting capacities.BMBF, 01IS12056, Software Campus GrantEC/H2020/679158/EU/Resolving the Tussle in the Internet: Mapping, Architecture, and Policy Making/ResolutioNe

    Physics-based Motion Planning with Temporal Logic Specifications

    Get PDF
    One of the main foci of robotics is nowadays centered in providing a great degree of autonomy to robots. A fundamental step in this direction is to give them the ability to plan in discrete and continuous spaces to find the required motions to complete a complex task. In this line, some recent approaches describe tasks with Linear Temporal Logic (LTL) and reason on discrete actions to guide sampling-based motion planning, with the aim of finding dynamically-feasible motions that satisfy the temporal-logic task specifications. The present paper proposes an LTL planning approach enhanced with the use of ontologies to describe and reason about the task, on the one hand, and that includes physics-based motion planning to allow the purposeful manipulation of objects, on the other hand. The proposal has been implemented and is illustrated with didactic examples with a mobile robot in simple scenarios where some of the goals are occupied with objects that must be removed in order to fulfill the task.Comment: The 20th World Congress of the International Federation of Automatic Control, 9-14 July 201
    • 

    corecore