88,321 research outputs found
Magic for Filter Optimization in Dynamic Bottom-up Processing
Off-line compilation of logic grammars using Magic allows an incorporation of
filtering into the logic underlying the grammar. The explicit definite clause
characterization of filtering resulting from Magic compilation allows processor
independent and logically clean optimizations of dynamic bottom-up processing
with respect to goal-directedness. Two filter optimizations based on the
program transformation technique of Unfolding are discussed which are of
practical and theoretical interest.Comment: 8 pages LaTeX (uses aclap.sty
Architecture-Aware Optimization on a 1600-core Graphics Processor
The graphics processing unit (GPU) continues to
make significant strides as an accelerator in commodity cluster
computing for high-performance computing (HPC). For example,
three of the top five fastest supercomputers in the world, as
ranked by the TOP500, employ GPUs as accelerators. Despite this
increasing interest in GPUs, however, optimizing the performance
of a GPU-accelerated compute node requires deep technical
knowledge of the underlying architecture. Although significant
literature exists on how to optimize GPU performance on the
more mature NVIDIA CUDA architecture, the converse is true
for OpenCL on the AMD GPU.
Consequently, we present and evaluate architecture-aware optimizations
for the AMD GPU. The most prominent optimizations
include (i) explicit use of registers, (ii) use of vector types, (iii)
removal of branches, and (iv) use of image memory for global data.
We demonstrate the efficacy of our AMD GPU optimizations by
applying each optimization in isolation as well as in concert to
a large-scale, molecular modeling application called GEM. Via
these AMD-specific GPU optimizations, the AMD Radeon HD
5870 GPU delivers 65% better performance than with the wellknown
NVIDIA-specific optimizations
SmartTrack: Efficient Predictive Race Detection
Widely used data race detectors, including the state-of-the-art FastTrack
algorithm, incur performance costs that are acceptable for regular in-house
testing, but miss races detectable from the analyzed execution. Predictive
analyses detect more data races in an analyzed execution than FastTrack
detects, but at significantly higher performance cost.
This paper presents SmartTrack, an algorithm that optimizes predictive race
detection analyses, including two analyses from prior work and a new analysis
introduced in this paper. SmartTrack's algorithm incorporates two main
optimizations: (1) epoch and ownership optimizations from prior work, applied
to predictive analysis for the first time; and (2) novel conflicting critical
section optimizations introduced by this paper. Our evaluation shows that
SmartTrack achieves performance competitive with FastTrack-a qualitative
improvement in the state of the art for data race detection.Comment: Extended arXiv version of PLDI 2020 paper (adds Appendices A-E) #228
SmartTrack: Efficient Predictive Race Detectio
A Survey on Compiler Autotuning using Machine Learning
Since the mid-1990s, researchers have been trying to use machine-learning
based approaches to solve a number of different compiler optimization problems.
These techniques primarily enhance the quality of the obtained results and,
more importantly, make it feasible to tackle two main compiler optimization
problems: optimization selection (choosing which optimizations to apply) and
phase-ordering (choosing the order of applying optimizations). The compiler
optimization space continues to grow due to the advancement of applications,
increasing number of compiler optimizations, and new target architectures.
Generic optimization passes in compilers cannot fully leverage newly introduced
optimizations and, therefore, cannot keep up with the pace of increasing
options. This survey summarizes and classifies the recent advances in using
machine learning for the compiler optimization field, particularly on the two
major problems of (1) selecting the best optimizations and (2) the
phase-ordering of optimizations. The survey highlights the approaches taken so
far, the obtained results, the fine-grain classification among different
approaches and finally, the influential papers of the field.Comment: version 5.0 (updated on September 2018)- Preprint Version For our
Accepted Journal @ ACM CSUR 2018 (42 pages) - This survey will be updated
quarterly here (Send me your new published papers to be added in the
subsequent version) History: Received November 2016; Revised August 2017;
Revised February 2018; Accepted March 2018
- …
