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Abstract—The graphics processing unit (GPU) continues to
make significant strides as an accelerator in commodity cluster
computing for high-performance computing (HPC). For example,
three of the top five fastest supercomputers in the world, as
ranked by the TOP500, employ GPUs as accelerators. Despite this
increasing interest in GPUs, however, optimizing the performance
of a GPU-accelerated compute node requires deep technical
knowledge of the underlying architecture. Although significant
literature exists on how to optimize GPU performance on the
more mature NVIDIA CUDA architecture, the converse is true
for OpenCL on the AMD GPU.

Consequently, we present and evaluate architecture-aware op-
timizations for the AMD GPU. The most prominent optimizations
include (i) explicit use of registers, (ii) use of vector types, (iii)
removal of branches, and (iv) use of image memory for global data.
We demonstrate the efficacy of our AMD GPU optimizations by
applying each optimization in isolation as well as in concert to
a large-scale, molecular modeling application called GEM. Via
these AMD-specific GPU optimizations, the AMD Radeon HD
5870 GPU delivers 65% better performance than with the well-
known NVIDIA-specific optimizations.
Keywords: GPU, OpenCL, CUDA, performance evaluation, perfor-
mance optimization, hill climbing. kernel splitting, local staging.

I. INTRODUCTION

The widespread adoption of compute-capable graphics pro-
cessing units (GPUs) in desktops and workstations has made
them popular as accelerators for high-performance parallel
programs [7]. The increased popularity has been assisted by
(i) the phenomenal computational power, (ii) the superior
performance-price ratio, and (iii) the compelling performance-
power ratio. Nowhere is this more prominently apparent than
in the TOP500, which shows that three of the top five fastest
supercomputers in the world are clusters that employ GPUs
as accelerators [1]. GPUs have also benefited a plethora of
application domains, ranging from image and video processing
to financial modeling and scientific computing, and hence, has
begot a new era in commoditized cluster computing [19].

With respect to programmability, many frameworks have
been developed to aid in the programming of applications on
GPUs, most notably, CUDA [16] and OpenCL [11]. Programs
written in OpenCL can execute across different platforms and
architectures. These architectures include multi-core CPUs,
GPUs, and even the Cell Broadband Engine. In contrast,
CUDA programs currently execute only on NVIDIA GPUs.

Even though our ability to implement general-purpose ap-
plications on GPUs has been facilitated by these frameworks,
it is far from trivial to optimize a program and extract optimum
performance from the GPU. Over the last three years, there
has been significant research on optimization strategies for
NVIDIA GPUs, e.g., [20], [21]. Popularity of these optimiza-
tions has led to a conception that they are sufficient to extract
optimal performance on all GPUs architectures.

However, optimized CUDA programs do not necessarily
exhibit consistent performance across NVIDIA GPUs from
different generations [4]. Therefore, expecting the researched
NVIDIA-specific optimizations to perform equally well on
other GPU architectures from AMD would be foolhardy. As
a further high-level corroboration, figure 1a presents the per-
formance results for GEM, a molecular modeling application
(described in section IV), using the well-known NVIDIA-
specific optimizations on two NVIDIA GPUs, each from a
different generation, as well as an AMD GPU. While the
speedup on the two NVIDIA GPU platforms is roughly the
same, the speedup on the AMD GPU is materially lower,
despite the fact that the peak performance of an AMD GPU is
more than two-fold higher than a NVIDIA GPU, as shown in
figure 1b. The GPUs that we used in our program optimization
study are towards the far right of figure 1b, Yet the sustained
performance of the AMD GPU, as shown in figure 1a, is more
than 30% worse than either NVIDIA GPU.

The above evidence implicitly indicates that architecture-
aware optimizations are necessary. In this work, we propose
optimization strategies specific to AMD GPUs. To the best of
our knowledge, this is the first detailed study of optimization
strategies built upon the underlying AMD GPU architecture.
Architectural subtleties, like the presence of vector cores rather
than scalar, only one branch execution unit for 80 processing
cores, and the presence of a rasterizer on the GPU influence
our proposal of the following optimization strategies: (i) use
of vector types, (ii) absolute removal of branches, and (iii)
use of image memory. We applied these optimizations to
GEM and have improved application performance by 65%
when compared to the implementation with NVIDIA-specific
optimizations. We also present a comparison of the efficacy
of each optimization strategy. Recent literature leads one to
believe that applications written in CUDA for NVIDIA GPUs
should perform best. However, we show that when optimized
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Fig. 1. Realized and Peak Performance of AMD and NVIDIA GPUs.

appropriately, performance on an AMD Radeon HD 5870 GPU
with OpenCL is 12% better than an equally well-optimized
CUDA implementation on an NVIDIA GTX280 GPU.

The rest of the paper is organized as follows. In sec-
tion II, we describe the OpenCL programming environment
and enumerate the well-known CUDA optimizations. We then
present background information about the lesser-known AMD
GPU and discuss why the AMD GPU architecture is not
amenable to all CUDA optimizations. Section III describes
each of the proposed optimization strategies. In sections IV
and V, we present our experimental setup and the results of
our optimizations, respectively. We present related work in
section VI and conclusions in Section VII.

II. BACKGROUND

Here we describe the OpenCL programming environment
and the basics of GPU architecture. We then enumerate the
well-known optimizations for NVIDIA GPUs. Finally, we
present the AMD GPU architecture and its differences from
the more common NVIDIA GPUs.

A. OpenCL and GPU Basics

OpenCL is currently the only open standard language for
programming GPUs and is supported by all major manufac-
turers of GPUs and some manufacturers of CPUs including
AMD, Intel, and most recently ARM. Given that OpenCL is a
standard, OpenCL terminology will be used in place of CUDA
terminology, wherever possible, in this section and in the rest
of the paper. An OpenCL application is made up of two parts:
(i) C/C++ code run on the CPU and (ii) OpenCL code in a
C-like language run on the GPU. The CPU code is used to
allocate memory, compile the OpenCL code, stage it, and run
it on the GPU. The OpenCL code is made up of kernels, which
are essentially functions designated to be run on GPU when
invoked by the CPU. Each kernel is in turn made up of a one
to three dimensional matrix of work groups, which consist of

one to three dimensional matrices of threads. The kernel is
the atomic unit of execution as far as the CPU is concerned
whereas on the GPU, minimum unit of execution is called
a wavefront, which is a group of 64 threads. A GPU kernel
is a cohesive entity, the work groups within a kernel are not
designed to communicate with each other safely.

At the highest level, a GPU is a stream processor, whether
it be from AMD or NVIDIA. All GPUs on the market at
present share certain architectural similarities and hence, it is
appropriate to make some generalizations before discussing
specific differences. GPUs are made up of one or more
compute units. Each compute unit contains registers, local
memory and constant memory, and can run and synchronize at
least one work group at a time in a SIMD fashion. A compute
unit can be further broken down into one or more processing
cores, and optionally, special-purpose processing cores for
non-standard functionality. Beyond the processor itself, GPUs
also share a common hierarchical memory model consisting
of four main memories – (i) global memory is the large device
memory accessible to all threads on all compute units and it
is not cached, (ii) image memory is a special mode of global
memory, which frequently involves a different memory-access
pattern and potentially additional caching, (iii) local memory is
a fast, explicitly managed scratch space on each compute unit,
which can be read and written by all threads in the work group
running on that compute unit, lastly, (iv) constant memory,
which is a low-latency, read-only space that is set by the CPU
and is visible to all threads during kernel execution.

B. CUDA Optimizations

Over the years, optimizing programs on NVIDIA GPUs has
been studied extensively [8], [18], [20]–[24], [26].

Below we broadly classify the five commandments of
optimization on NVIDIA GPUs as follows:
• Run many threads: An NVIDIA GPU consists of up to

512 cores, each of which requires a thread to be able to



do work. If there are less threads than cores then potential
computation is wasted, thereby reducing the occupancy.
Beyond having enough threads to fill the cores, global
memory accesses are slow to the tune of hundreds of
cycles blocking. To amortize the cost of global memory
accesses, there has to be enough threads in flight to take
over when one or more threads are stalled on memory
accesses. Since CUDA threads are lightweight, launching
thousands of threads does not incur materially more cost
than hundreds. However, to be able to achieve high
occupancy, the amount of registers used per thread has to
be kept minimum. The total number of threads scheduled
at a time cannot exceed the number of threads that can fit
all their required registers in the register file. Therefore,
there is a trade-off between the number of threads that
can be launched and the number of registers used per
thread on NVIDIA GPUs.

• Use on-chip memory: In addition to registers, NVIDIA
GPUs provide two types of low-latency, on-chip memory:
(i) local memory and, (ii) constant memory. Local mem-
ory is shared among the threads of a thread-block, and
thus, enables data reuse between threads within a work
group. In addition, local memory can also be used as a
small software-managed cache due to its low latency and
low contention cost. Constant memory, on the other hand,
is read-only to kernels and is beneficial for storing fre-
quently used constants and unchanged parameters, which
are shared among all GPU threads. However, both of
these memory types are of limited capacity, necessitating
judicious use of space. In both cases, they help reduce the
waiting time on global memory by reducing the number
of global memory accesses without increasing register
usage.

• Organize data in memory: Likely the most well-known
optimization on NVIDIA GPUs is ensuring that reads
from global memory are coalesced. This means that
threads in the same warp, or wavefront, should access
contiguous memory elements concurrently. In addition to
coalescing, one should also ensure that threads access
data from different banks of local memory to avoid bank
conflicts, or else these accesses are serialized. Similarly,
different active warps accessing the same global memory
partition results into a bottleneck known as partition
camping, which can lead to a potential eight-fold slow-
down [17].

• Minimize divergent threads: Threads within a wave-
front should follow identical execution paths. If the
threads diverge due to conditionals and follow different
paths, then the execution of said paths becomes serialized.
For example, if there are four possible branches and
all are taken by some thread(s) in the same warp then
the work group will take 4 times as long to execute
as compared to when they took the same branch, with
the assumption that all branches execute same number of
instructions. In extreme cases this could become as high
as a 32-fold slowdown.
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Fig. 2. Block Diagram of an AMD Stream Processor and Thread Scheduler

• Reduce dynamic instruction count: Execution time
of a kernel is directly proportional to the number of
dynamic instructions executed by it. The onus of reducing
the number of instructions lies upon the programmer.
Reduction in the number of instructions can be done
using traditional compiler optimizations like common
subexpression elimination, loop unrolling and explicit
pre-fetching of data from the memory. However, these
optimizations result in increased register usage which in
turn limits the number of threads that can be launched,
thus, reducing the occupancy of the kernel.

Figure 1a depicts the speedup obtained for GEM using
using the aforementioned optimizations on various GPUs. It
can be noted that there is a substantial performance difference
amongst GPUs from NVIDIA and AMD. The difference in
performance can be attributed to the fact that they have
different underlying architectures. This leads us to believe that
architecture-aware optimizations is necessary to extract the
optimal performance on each architecture. In the following
subsection, we present a description of the architecture of
AMD GPUs.

C. AMD GPU Architecture

While section II-A draws a general picture of GPUs, all
GPUs are not created equal. Here we focus on how the AMD
GPU architecture differs from that of NVIDIA. AMD GPUs
follow a more classic graphics design, which is highly tuned
for two dimensional and image data as well as common image
operations and single-precision, floating-point math. Figure 2
shows a high-level architecture of an AMD GPU.

In this case, the compute unit is known as a SIMD Engine,
and contains several thread processors, each containing four
standard processing cores, along with a special purpose core
and one branch execution unit. The special purpose, or T-
Stream, core executes certain mathematical functions in hard-
ware, such as transcendentals like sin(), cos() and tan(). As
shown in figure 2, there is only one branch execution unit for
every five processing cores, thus any branch, divergent or not,
incurs some amount of serialization to determine which path
each thread will take.



The five commandments of optimization from section II-B
include minimizing divergent conditionals. This command-
ment is particularly important for the AMD GPU, where
execution of divergent branches for all the cores in a com-
pute unit is performed in a lock-step manner and hence,
the penalty for divergent branches can be as high as 80-
cycles-per-instruction for compute units with 80 cores. That
NVIDIA-specific commandment, however, makes no mention
of non-divergent branching because NVIDIA’s design does not
necessitate this serialization. In addition, while the processing
cores in a compute unit on a NVIDIA GPU execute in SIMD
fashion, each of them is a scalar core, whereas the processing
cores of an AMD GPU are vector processors. As a result
of this, using vector types and vector math on NVIDIA is
simply extra overhead, while on AMD it can produce material
speedup.

Recent GPUs from AMD consist of 800 to 1600 processing
cores, as opposed to 240, 480, and 512 from NVIDIA.
Therefore, the first of the five commandments of optimization
(i.e., Run many threads) is even more important for AMD
GPUs. However, to run many threads, one needs to keep a
check on the amount of registers used per thread. Hence, to
support the execution of many threads, AMD GPUs have a
considerably large register file, for e.g., 256 KB, on the latest
generation of GPUs.

Another unique architectural feature of AMD GPUs is the
presence of a rasterizer, which makes them more suitable
for working with two dimensional matrices of threads and
data. Hence, accessing scaler elements stored contiguously in
memory is not the most efficient access pattern. However, the
presence of vector cores makes accessing the scalar elements
in chunks of 128 bits slightly more efficient. Loading these
chunks from image memory, which uses the memory layout
best matched to the memory hardware on AMD GPUs, also
results in large improvement in performance.

III. AMD OPTIMIZATIONS

Since we have shown that the NVIDIA-specific five com-
mandments of optimization do not necessarily apply equally
to AMD architectures, we discuss optimizations that apply to
AMD GPUs.

A. Run many threads

The most intuitive optimization for any GPU platform is
making sure that none of the computational resources go
under-utilized. On a GPU, this is done by executing enough
threads such that none of the GPU cores are idle and the
occupancy is always maximum. Specifically, we executed as
many threads as was permissible by the GPU. We call this
optimization Max. Threads.

B. Kernel Splitting

Figure 2 depicts that an AMD GPU has only one branching
unit for every five processing cores. Further, the result of
this is that even non-divergent branches can cause significant
performance degradation. Oftentimes, even if the outcome of

int main() {
...
int a = 5;
/*run work() kernel*/
...

}
kernel void work(int a){
if(a){
/*do work */1

}else{
/*do work 2*/

}
}

int main() {
...
int a = 5;
if(a){

/*run work1() kernel*/
}else{

/*run work2() kernel*/
}
...

}
kernel void work1(int a){
/*do work 1*/

}
kernel void work2(int a){
/*do work 2*/

}

Fig. 3. Kernel Splitting

a conditional can be determined before a function, or GPU
kernel, is called, the conditional is frequently pushed into
the function or GPU kernel anyway in order to simplify the
understanding of the code. Figure 3 shows a simple example of
this phenomenon, which we denote kernel splitting. On CPUs,
the performance lost to non-divergent branches is minimal due
to speculative execution and branch prediction. On NVIDIA
GPUs the cost is higher, but not as much as on AMD GPUs,
as a wavefront on a NVIDIA GPU consists of 32 threads
whereas that on an AMD GPU consists of 64 threads. It is
required that all these threads follow the same execution path,
which doubles the probability of the occurrence of divergence
on AMD GPUs and hence, the cost of branching is greater.
Presence of branching can lead to a difference of up to 30% on
AMD GPUs, as showed in [3]. As a result, even though it will
help everywhere, we count kernel splitting as an optimization
for AMD GPUs since it helps significantly more on that
platform.

Kernel splitting is implemented by moving the conditionals,
result of which are predetermined at the beginning of a kernel,
to the CPU. The kernel is then split into two parts, each
part executes a different branch of that conditional. Despite
the simplicity of the optimization, implementing it in practice
can be complicated. The optimized implementation of GEM
employs 16 kernels to make this optimization work for all
inputs.

C. Local Staging

Local staging has its basis in the same logic as the second
commandment from section II-B. It alludes to the use of on-
chip memory present on the GPU. Subsequent accesses to the
on-chip memory are more efficient than accessing data from its
original location in the global memory. Conventional wisdom
states that prefetching and reusing data in constant and local
memories is extremely efficient. On AMD GPUs this is true
when large amounts of data is seldom reused or when data
loaded into local or constant memory is reused by more than
one thread in the active work group. In general local memory
and constant memory are faster than global memory, allowing
for speedups but they are not always the best option.

Local and constant memory on AMD GPUs are significantly



//before
float localx, localy,

localz, localc;
localx = globalx[i];
localy = globaly[i];
localz = globalz[i];
localc = globalc[i];

//after
float4 local4;
local4 = vload4(i, global4);

Fig. 4. Vector Loads

slower to access than the registers. Hence, for small amounts of
data and for data that is not shared between threads, registers
are much faster. On the other hand, as mentioned earlier,
using too many registers in a thread can produce register
pressure or a situation where less threads can be active on
a compute unit at a time due to lack of registers. Reduction
in the number of active threads can degrade performance, but
since AMD GPUs have a large register file, it is frequently
worth using extra registers to improve memory performance.
One case where this is especially true is for accumulator
variables. If an algorithm includes a main loop in each thread,
which updates a value each time through the loop, moving that
accumulator into a register can make a significant difference
in performance, as will be discussed in section V. It is worth
noting that there is a wall with register usage on AMD GPUs.
Beyond 124 registers per thread, the system starts putting data
into spill space, which is actually global memory, and hence,
can degrade performance.

D. Vector Types

Vector types in OpenCL are designed to represent the
vectors used by SIMD execution units like SSE or AltiVec.
Vector is a single large word of 64 to 512 bits containing
smaller scalars. Generally the most used type of this class is
the float4, as it matches the size of the registers on an
AMD GPU as well as the size of an SSE word. Using vector
types in CUDA programs simply maps the actions down to
scalar types (except in the cases of loads and stores). In either
case, the performance usually does not benefit from it. On the
other hand, AMD GPUs are optimized for memory accesses
of 128 bits as well as computation on vector data-types like
float{2,4}. However, some math is not optimized, specif-
ically the transcendental functions provided by the T-Stream
core. The overhead of unpacking the vector and computing
the transcendentals is higher than just doing all the math with
scalars in some cases.

Even when scalar math is faster, however, loading memory
in float2 or float4, is more efficient than loading scalars,
as shown in figure 4. From the figure, it can be noted
that vectorization on a GPU is vastly simpler than explicit
vectorization on a CPU using hand-tuned vector intrinsics.
Prefetching with vector loads followed by unrolling a loop to
do the math in scalars and then storing the vector can provide
a significant improvement.

E. Image Memory

With older versions of NVIDIA hardware, texture memory
— the CUDA equivalent of image memory — was commonly
listed as an efficient way to increase performance of memory
accesses. However, applying this optimization on a CUDA
version of GEM on a NVIDIA GPU does not produce much
benefit. On AMD GPUs, image memory is an efficient way
to increase performance of memory accesses as it acts as a
cache when there is high data reuse in the program. Image
memory offers many transformations meant to speedup the
access of images stored within it and is also equally capable
of reading simple quads, or float4 vectors. As mentioned
above, loading larger vector types from memory is more
efficient, adding to it, the benefits of caching and more efficient
memory access patterns offered by image memory make these
two a potent combination.

F. Combining Optimizations

When applying optimizations, what happens when the opti-
mizations are combined? If two individual optimizations can
improve performance of a base application individually, it is
very alluring to assume that they will “stack” or combine to
create an even faster implementation when applied together.
All the optimizations presented to this point, both as the five
commandments of optimization and in this section, produce
some amount of benefit when applied to completely unopti-
mized code. Given the fact that they all benefit the unoptimized
version, one might believe that using all of the optimizations
together would produce the fastest implementation. However,
this is not the case.

In the auto-tuning work of [9], Datta et al. had many
optimizations to tune simultaneously, as we do here, and
decided on an approach which was later referred to as hill
climbing [25]. Essentially, hill climbing consists of optimizing
along one axis to find the best performance, then finding the
best parameter for the next axis after fixing the first, and so on.
This implies that all the parameters are cumulative, or at least,
that order does not matter. While this is a popular approach, we
find that the inherent assumptions about optimization combi-
nation are not reasonable, at least when it comes to optimizing
for GPUs. Further discussion of optimization stacking will be
presented in Section V.

IV. EXPERIMENTAL SETUP

A. System

To demonstrate the performance difference between differ-
ent GPU architectures, we used two GPUs from the same gen-
eration an AMD Radeon HD 5870 and an NVIDIA GTX280.
An overview of both these GPUs is presented in Table I. The
designated host systems for these GPUs consists of an Intel
E5405 quad-core processor running at 2.0 GHz along with 4-
GB DDR2 SDRAM. The operating system on the host is a
64-bit version of Ubuntu 9.04 distribution running the 2.6.28-
16 generic Linux kernel. The AMD Radeon HD 5870 was
programmed with OpenCL 1.1 from the AMD Stream SDK
version 2.3 with fglrx driver version 8.76.7. The NVIDIA



// Host function on the CPU
GEM-GPU(){

int tot_potential, int potential[#SurfacePoints]
/* launch GPU kernel with as many
threads as #SurfacePoints */
GPU_kernel( atoms, potential )
/* Read back potential computed on the GPU */
/* Iterate over the potentials read back
from the GPU to compute total potential*/
for v = 0 to #SurfacePoints do {

tot_potential = potential[v]
}

}
// GPU Kernel
GPU_kernel( atoms, potential ) {

tid = thread_id;
/* Iterate over all atoms */
for a = 0 to #Atoms do {

/* Compute potential at each vertex
due to every atom */
potential[tid] += calcPotential( v, a )

}
}

Fig. 5. GEM: Algorithm for GPU implementation

GTX280 was programmed with the CUDA 3.1 toolkit with
driver version 256.40. The performance results (i.e., execution
times) of the GPU constitute only the main computational
kernel plus the memory allocations and transfers that are
necessary for it to function, no disk I/O is included.

B. Application

To illustrate the efficacy of our optimizations, we validated
them against a large-scale molecular modeling application
called GEM [10]. GEM allows the visualization of electrostatic
potential along the surface of a macromolecule. It represents
the n-body dwarf [5], but while most n-body applications are
all-pairs computation given a single list of points, GEM is
an all-pairs computation between two lists. The input to it is
a list of atomic coordinates and charges, and a list of pre-
computed surface points or vertices, for which the potential is
desired. Algorithm for the GPU implementation is presented
in figure 5. From the algorithm, it is clear that for each
thread, the coordinates of atoms as well as the vertex need
to be accessed #atoms times from the memory. Since for a
thread, the vertex coordinates do not change, caching them
should improve application performance as it would reduce
the number of slow memory accesses. Also, the potential at
each vertex is updated for every atom and is stored in an
accumulator variable. This variable can be cached or stored in
a register to provide further performance improvement.

We ran our tests with four input problem sets of varying
sizes. Because the performance benefits across the four input
sets were consistent, we present results only for the largest
input set.

V. RESULTS & ANALYSIS

In this section, we demonstrate the effectiveness of each
of our optimization techniques, in isolation as well as when
combined with other optimizations. Subsequently, we present
performance results of GEM when it is specifically optimized

TABLE I
OVERVIEW OF GPUS

GPU AMD Radeon NVIDIA
HD 5870 GTX280

SIMD Units 20 30
Streaming Processor Cores 1600 240
Core Clock Rate 850 MHz 1296 MHz
Memory Clock Rate 1200 MHz 1107 MHz
Memory Bus type GDDR5 GDDR3
Device Memory size 1024 MB 1024 MB
Memory Bandwidth 153.6 GB/s 141.7 GB/s
Local (Shared) Memory
per SIMD Unit 32 KB 16 KB
Registers per SIMD Unit 256 KB 64 KB
Double Precision FP
Performance 554 GFLOPs 78 GFLOPs
Single Precision FP
Performance 2720.0 GFLOPs 933.3 GFLOPs

for different GPU architectures and conclude that these opti-
mizations can improve performance by 65% when compared
to NVIDIA-specific optimizations.

A. Run many threads

Figure 6 portrays that there is around 30% performance
improvement over the basic implementation, when maximum
number of threads are launched on the GPU. Basic implemen-
tation in this case, was executed with 64 threads (threads in
one wavefront). This infers that higher occupancy on the GPU
leads to better performance.

B. Kernel Splitting

In figure 6, we compare the performance results between
the basic OpenCL implementation and the one optimized with
kernel splitting. We find that kernel splitting delivers a 1.7-fold
performance benefit. This can be reasoned as follows. The
AMD GPU architecture has only one branch execution unit
for five processing cores, as discussed in section II-C. Hence,
branching on an AMD GPU incurs a huge performance loss
as the branch itself takes five times as long as branches on the
NVIDIA GPU architecture, for example. Kernel splitting is an
effective way towards reducing branching on the GPU.

C. Local Staging

In order to obtain optimum performance on GPUs, thread
utilization should be improved. This can be achieved by
reducing the number of registers utilized per thread, since
more registers mean fewer threads in the kernel. However,
the register file size of present-day AMD GPUs is four
times the register file size in NVIDIA GPUs and hence, one
should not inhibit the use of registers as strictly. We achieved
superior performance by making explicit use of registers in
our computational kernel. GEM involves accumulating the
atomic potential at every vertex of the molecule. Rather than
updating the intermediate result in global memory, we used
a register accumulator. This approach provided us with a
1.3-fold speedup over the basic implementation, as shown in
figure 6. Using registers to preload data from global memory



1.3	  

1.7	  

1.3	  
1.6	  

2.3	  

1.2	   1.1	   1.2	   1.2	   1.1	  

3.1	  

2.3	  

0	  

0.5	  

1	  

1.5	  

2	  

2.5	  

3	  

3.5	  

M
T	   KS
	  

RA
	  

RP
	  

LM
	  

IM
	  

LU
2	  

LU
4	  

VA
SM

2	  

VA
SM

4	  

VA
VM

2	  

VA
VM

4	  

Sp
ee
du

p	  

Fig. 6. Speedup Due to Each Optimization over Basic OpenCL GPU Version
MT: Max. Threads, KS: Kernel Splitting, RA: Register Accumulator, RP: Reg-
ister Preloading, LM: Local Memory, IM: Image Memory, LU{2,4}: Loop Un-
rolling{2x,4x}, VASM{2,4}: Vectorized Access & Scalar Math{float2, float4},
VAVM{2,4}: Vectorized Access & Vector Math{float2, float4}

is also deemed to be favorable. Preloading provides up to 1.6-
fold performance benefit over the basic implementation. The
kernel incorporates high data reuse as same data is loaded
from within a loop and hence, preloading this data in a register
and using it within the loop provides substantial performance
benefit.

Improvement due to the use of local memory is almost 2.3-
fold over the basic implementation. Local memory is an on-
chip scratch pad memory present on each compute unit of the
GPU. It is appropriate to use local memory when there is high
data re-use in the kernel, which as mentioned is true for GEM.
Performance benefit obtained due to the use of local memory is
1.4 times more than that obtained by register preloading. This
behavior of the GPU is aberrant as one would expect register
preloading to be more beneficial than using local memory,
given the fact that register file is the fastest on-chip memory.

D. Vector Types

Loop unrolling reduces the number of dynamic instructions
in a loop, such as pointer arithmetic and ”end of loop”
tests. It also reduces branch penalties and hence, provides
better performance. Figure 6 presents the performance benefit
obtained by explicit 2-way and 4-way loop unrolling. As 4-
way unrolling reduces the dynamic instruction count by a
factor of two more than 2-way unrolling, it results in better
performance.

Accessing global memory as vectors proves to be more
beneficial than scalar memory accesses, as shown in figure 6.
However, the length of vector, either float4 or float2,
which culminates in the fastest kernel performance may de-
pend upon the problem size. From the figure, we note that
float2 is better than float4 for GEM. Use of vectorized
memory accesses pack in up to four scalar accesses into one
vector access, thus, conserving memory bandwidth as accesses
which would have taken four memory accesses can now be
completed with one access. Vectorized accesses also improve
the arithmetic intensity of the program.

Use of vector math proves to be highly beneficial on AMD
GPUs. Vector math provides up to 3-fold speedup in case
of float2. AMD GPUs are capable of issuing 5 floating
point scalar operations in a VLIW and for most efficient
performance, utilization of all VLIW slots is imperative.
It is almost always the responsibility of the compiler to
make sure that instructions are appropriately assigned to each
slot. However, there might be instances when due to the
programming constructs used, compiler may not do so. Use
of vectorized math assists the compiler in ensuring that the
ALU units are completely utilized. It improves the mapping
of computations on 5-way VLIW and 128-bit registers of
the AMD architecture. The dynamic instruction count is also
reduced by a factor of the length of vector, since, multiple
scalar instructions can now be executed in parallel.

E. Image Memory

Presence of L1 and L2 texture caches assists the image
memory to provide additional memory bandwidth when data
is accessed from the GPU memory. Using image memory
in read-only mode results in the utilization of FastPath on
AMD GPUs, which leverages the presence of L2 cache [2].
However, if image memory is used in read-write mode, GPU
sacrifices the L2 cache in order to perform atomic operations
on global objects and hence, read-write image memory should
be used only when necessary. We have used read-only image
memory to store data that is heavily reused in the kernel. An
improvement of up to 1.2-fold over the basic implementation
was obtained, as shown in figure 6. This is completely at
odds with our previous experience with texture memory on
CUDA, in which the same optimization actually degraded the
performance by 8%.

F. Efficacy of Combining Optimizations

In figure 7, we illustrate that optimizations when combined
with each other do not provide “stackable” performance ben-
efit as one might expect. Also, we show that optimizations
which performed better in isolation may perform worse when
used in conjunction with another optimization strategy. We
also discuss the methodology that we followed in order
to implement the most optimized implementation of GEM.
Figure 7 depicts that speedup obtained due to a combination
of Max. Threads and Kernel Splitting is 1.8-fold over the
basic implementation. However, if individual speedups are
taken into consideration then the multiplicative speedup should
have been 2.2-fold, which is greater than what we actually
achieved. Also from the figure, we note that a combination
of Kernel Splitting and Register Preloading tends to be
better than that of Kernel Splitting and Local Memory
(even though in isolation, local memory performs better than
register preloading). This proves that a certain optimization
strategy which performs better in isolation is not guaranteed to
perform well in combination also. Similar are the results when
Vector Math is used in conjunction with Kernel Splitting.
Our results indicate that Register Preloading is the most
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effective on-chip memory, which is in accordance to the fact
that registers are fastest.

To come up with the best combination of optimizations,
we used an elimination policy, eliminating those optimizations
that have been shown to perform worse. Specifically, we
tested 32 different combinations of optimizations. As Regis-
ter Preloading and Scalar Math are known to perform better
than the rest, we combined these two with Kernel Splitting
and achieved a 3.2-fold speedup over the basic implemen-
tation. Vectorized accesses have proved to be beneficial and
hence, we used image memory as it internally loads vectors
from memory and achieved a 4.1-fold speedup over the basic
implementation. We then combined Kernel Splitting, Reg-
ister Preloading, Image Memory and Max. Threads to
achieve the most optimized implementation of GEM.

Figure 8 presents the speedup obtained with various imple-
mentations of GEM on both AMD and NVIDIA GPUs. Key
aspects to note are as follows. GEM implementation on the
AMD GPU, optimized with the discussed strategies performs
65% better than the one optimized with NVIDIA-specific
strategies, hence proving that architecture-aware optimizations
are imperative for optimal performance. Also with NVIDIA-
specific strategies, GEM performs 30% worse on the AMD
GPU than on the NVIDIA GPU. However, with architecture-
aware optimizations, GEM on AMD GPU performs 12%
better, which is now in tune with the higher peak performance
of the AMD GPU.

VI. RELATED WORK

Most work in GPU computing over the last few years
has been performed using NVIDIA’s CUDA architecture [15],
[16]. As a result of its popularity, there has been a substantial
amount of research done to determine optimization strategies
for extracting peak performance from NVIDIA GPUs. The
NVIDIA CUDA Programming Guide lists many optimization
strategies useful for extracting peak performance on NVIDIA
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GPUs [18]. In [20]–[23], Ryoo et al. present optimization
principles of a GPU using CUDA. They conclude that though
the optimizations assist in improving performance, the op-
timization space is large and tedious to explore by hand.
In [24], Volkov et al. argue that the GPU should be viewed
as one composed of multi-threaded vector units and infer that
one should make explicit use of registers as primary on-chip
memory as well as use short vectors to conserve bandwidth.
In [26], the authors expose the optimization strategies of the
GPU subsystem with the help of micro-benchmarking.

Previous published work on optimizations for AMD GPUs
has been with Brook+, which has now been deprecated by
AMD [6]. In [13], [27], authors propose optimization strategies
for Brook+ and evaluate them by implementing a matrix
multiplication kernel and a multi-grid application for solving
PDEs respectively. In [3], authors accelerate the computation
of electrostatic-surface potential for molecular modeling by
using Brook+ on AMD GPUs. In [12], authors present a
software platform which tunes the OpenCL program written
for heterogenous architectures to perform efficiently on CPU-
only systems. The only work related to OpenCL GPU opti-
mizations is a case study discussing an auto-tuning framework
for designing kernels [14]. Hence, the work presented here is
the first, to the best our knowledge, to publish and propose
OpenCL optimization strategies for AMD GPUs. We believe
that the causal relationship between programming techniques
and the underlying GPU architecture has to be exploited in
order to extract peak performance.

VII. CONCLUSION

GPUs are garnering greater mind share and market share,
every day. Their advantages in performance, performance-
per-dollar, and performance-per-watt continue to drive them
further into the high-performance computing (HPC) space.
Along with this, they are also being used more and more
for accelerating desktop applications. In either case, realizing
the benefits that GPUs can provide is contingent on writing
GPU-enabled applications, and subsequently, on being able to
optimize these programs to make efficient use of the hardware.
Optimizing programs for NVIDIA GPUs has been well studied



and published heavily, but optimizing for other GPU platforms
such as those from AMD has barely been mentioned.

In this work, we extend the knowledge of the optimization
space applicable to GPU architectures. We accomplish this
by studying the optimizations which improve performance on
a 1600-core GPU, specifically an AMD Radeon HD 5870, in
comparison with those which are known to achieve similar re-
sults on NVIDIA’s CUDA GPU platform. To do this, we chose
an application whose optimization space we have previously
studied on the NVIDIA CUDA platform, as well on the AMD
platform using the now deprecated, Brook+ [?], [3]. We manu-
ally implemented every common CUDA optimization, as well
as some new ones, for it on OpenCL. Through this process, we
found that while the combination of optimizations favored by
the CUDA community produces performance improvement for
NVIDIA GPUs, the same combination is not always best for
AMD GPUs. For that matter, some of the optimizations which
cause performance degradation on NVIDIA produce speedups
on AMD and vice versa. To summarize, we have shown that
well-known optimizations from one architecture do not always
apply favorably to another. In addition, we have presented
and evaluated several less-known optimizations for OpenCL
on AMD GPUs.
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