3 research outputs found

    Dynamic evolving neural fuzzy inference system equalization scheme in mode division multiplexer for optical fiber transmission

    Get PDF
    The performance of optical mode division multiplexer (MDM) is affected by inter-symbol interference (ISI), which arises from higher-order mode coupling and modal dispersion in multimode fiber (MMF). Existing equalization algorithms in MDM can mitigate linear channel impairments, but cannot tackle nonlinear channel impairments accurately. Therefore, mitigating the noise in the received signal of MDM in the presence of ISI to recover the transmitted signal is important issue. This paper aims at controlling the broadening of the signal from MDM and minimizing the undesirable noise among channels. A dynamic evolving neural fuzzy inference system (DENFIS) equalization scheme has been used to achieve this objective. Results illustrate that nonlinear DENFIS equalization scheme can improve the received distorted signal from an MDM with better accuracy than previous linear equalization schemes such as recursive‐least‐square (RLS) algorithm. Desirably, this effect allows faster data transmission rate in MDM. Additionally, the successful offline implementation of DENFIS equalization in MDM encourages future online implementation of DENFIS equalization in embedded optical systems

    Hybrid Dy-NFIS & RLS equalization for ZCC code in optical-CDMA over multi-mode optical fiber

    Get PDF
    For long haul coherent optical fiber communication systems, it is significant to precisely monitor the quality of transmission links and optical signals. The channel capacity beyond Shannon limit of Single-mode optical fiber (SMOF) is achieved with the help of Multi-mode optical fiber (MMOF), where the signal is multiplexed in different spatial modes. To increase single-mode transmission capacity and to avoid a foreseen “capacity crunch”, researchers have been motivated to employ MMOF as an alternative. Furthermore, different multiplexing techniques could be applied in MMOF to improve the communication system. One of these techniques is the Optical Code Division Multiple Access (Optical-CDMA), which simplifies and decentralizes network controls to improve spectral efficiency and information security increasing flexibility in bandwidth granularity. This technique also allows synchronous and simultaneous transmission medium to be shared by many users. However, during the propagation of the data over the MMOF based on Optical-CDMA, an inevitable encountered issue is pulse dispersion, nonlinearity and MAI due to mode coupling. Moreover, pulse dispersion, nonlinearity and MAI are significant aspects for the evaluation of the performance of high-speed MMOF communication systems based on Optical-CDMA. This work suggests a hybrid algorithm based on nonlinear algorithm (Dynamic evolving neural fuzzy inference (Dy-NFIS)) and linear algorithm (Recursive least squares (RLS)) equalization for ZCC code in Optical-CDMA over MMOF. Root mean squared error (RMSE), mean squared error (MSE) and Structural Similarity index (SSIM) are used to measure performance results

    Dynamic evolving neural fuzzy inference system equalization scheme in mode division multiplexing for optical fiber transmission

    Get PDF
    The performance of optical mode division multiplexing (MDM) is affected by intersymbol interference (ISI) from nonlinear channel impairments arising from higherorder mode coupling and modal dispersion in multimode fiber. However, the existing MDM equalization algorithms can only mitigate the linear distortion, but they cannot address nonlinear distortion in the signal accurately. Therefore, there is a need to explore how ISI can be mitigated to recover the transmitted signal. This research aims to control the broadening of the MDM signal and minimize the undesirable distortion among channels in MMF by signal reshaping at the receiver. A dynamic evolving neural fuzzy inference system (DENFIS) equalization scheme has been used to achieve this objective. This research was conducted through a few steps commencing with modelling the MDM system in Optsim and collecting the data. Then, the signal reshaping parameters were determined. After that, DENFIS equalization, least mean square (LMS) and recursive least squares (RLS) equalizations were implemented and evaluated. Results illustrated that nonlinear DENFIS equalization scheme can improve MDM signal at a higher accuracy than previous linear equalization schemes. DENFIS equalization demonstrates better signal reshaping accuracy with an average root mean square error (RMSE) of 0.0338 and outperformed linear LMS and RLS equalization schemes with high average RMSE values of 0.101 and 0.1914 respectively. The reduced RMSE implies that DENFIS equalization scheme mitigates ISI more effectively in a nonlinear channel. This effect can hasten data transmission rates in MDM. Moreover, the successful offline implementation of DENFIS equalization in MDM encourages future online implementation of DENFIS equalization in embedded optical systems
    corecore