7 research outputs found

    Optimization-based multibody dynamics modeling method for team lifting simulation

    Get PDF
    A novel optimization-based multibody dynamics modeling method is proposed for two-dimensional (2D) team lifting prediction. The box itself is modeled as a floating-base rigid body in Denavit-Hartenberg representation. The interactions between humans and box are modeled as a set of grasping forces which are treated as unknowns (design variables) in the optimization formulation. An inverse dynamics optimization is used to simulate the team lifting motion where the dynamic effort of two humans is minimized subjected to physical and task-based constraints. The design variables are control points of cubic B-splines of joint angle profiles of two humans and the box, and the grasping forces between humans and the box. Analytical sensitivities are derived for all constraints and objective functions, including the varying unknown grasping forces. Two numerical examples are successfully simulated: one is to lift a 10 Kg box with the center of mass (COM) in the middle, and the other is the same weight box with the COM off the center. The humans' joint angle, torque, ground reaction force, and grasping force profiles are reported. The optimal solution is obtained in 151.99 seconds. The simulated motions are validated against the experimental joint angle profiles. Reasonable team lifting motion, kinematics, and kinetics are predicted using the proposed novel multibody dynamic modeling approach and optimization formulation

    Characterization and study of the primitive dynamic movements required to bi-manipulate a box

    Get PDF
    Automating the action of finding the opening side of a box is not possible if the robot is not capable of reaching and evaluating all of its sides. To achieve this goal, in this paper, three different movement strategies to bi-manipulate a box are studied: overturning, lifting, and spinning it over a surface. First of all, the dynamics involved in each of the three movement strategies are studied using physics equations. Then, a set of experiments are conducted to determine if the real response of the humanoid robot, TEO, to a box is consistent with the expected answer based on theoretical calculus. After the dynamics validation, the information on the forces and the position in the end effectors is used to characterize these movements and create its primitives. These primitive movements will be used in the future to design a hybrid position–force control in order to adapt the movements to different kinds of boxes. The structure of this control is also presented in this pape

    Generating whole body movements for dynamics anthropomorphic systems under constraints

    Get PDF
    Cette thèse étudie la question de la génération de mouvements corps-complet pour des systèmes anthropomorphes. Elle considère le problème de la modélisation et de la commande en abordant la question difficile de la génération de mouvements ressemblant à ceux de l'homme. En premier lieu, un modèle dynamique du robot humanoïde HRP-2 est élaboré à partir de l'algorithme récursif de Newton-Euler pour les vecteurs spatiaux. Un nouveau schéma de commande dynamique est ensuite développé, en utilisant une cascade de programmes quadratiques (QP) optimisant des fonctions coûts et calculant les couples de commande en satisfaisant des contraintes d'égalité et d'inégalité. La cascade de problèmes quadratiques est définie par une pile de tâches associée à un ordre de priorité. Nous proposons ensuite une formulation unifiée des contraintes de contacts planaires et nous montrons que la méthode proposée permet de prendre en compte plusieurs contacts non coplanaires et généralise la contrainte usuelle du ZMP dans le cas où seulement les pieds sont en contact avec le sol. Nous relions ensuite les algorithmes de génération de mouvement issus de la robotique aux outils de capture du mouvement humain en développant une méthode originale de génération de mouvement visant à imiter le mouvement humain. Cette méthode est basée sur le recalage des données capturées et l'édition du mouvement en utilisant le solveur hiérarchique précédemment introduit et la définition de tâches et de contraintes dynamiques. Cette méthode originale permet d'ajuster un mouvement humain capturé pour le reproduire fidèlement sur un humanoïde en respectant sa propre dynamique. Enfin, dans le but de simuler des mouvements qui ressemblent à ceux de l'homme, nous développons un modèle anthropomorphe ayant un nombre de degrés de liberté supérieur à celui du robot humanoïde HRP2. Le solveur générique est utilisé pour simuler le mouvement sur ce nouveau modèle. Une série de tâches est définie pour décrire un scénario joué par un humain. Nous montrons, par une simple analyse qualitative du mouvement, que la prise en compte du modèle dynamique permet d'accroitre naturellement le réalisme du mouvement.This thesis studies the question of whole body motion generation for anthropomorphic systems. Within this work, the problem of modeling and control is considered by addressing the difficult issue of generating human-like motion. First, a dynamic model of the humanoid robot HRP-2 is elaborated based on the recursive Newton-Euler algorithm for spatial vectors. A new dynamic control scheme is then developed adopting a cascade of quadratic programs (QP) optimizing the cost functions and computing the torque control while satisfying equality and inequality constraints. The cascade of the quadratic programs is defined by a stack of tasks associated to a priority order. Next, we propose a unified formulation of the planar contact constraints, and we demonstrate that the proposed method allows taking into account multiple non coplanar contacts and generalizes the common ZMP constraint when only the feet are in contact with the ground. Then, we link the algorithms of motion generation resulting from robotics to the human motion capture tools by developing an original method of motion generation aiming at the imitation of the human motion. This method is based on the reshaping of the captured data and the motion editing by using the hierarchical solver previously introduced and the definition of dynamic tasks and constraints. This original method allows adjusting a captured human motion in order to reliably reproduce it on a humanoid while respecting its own dynamics. Finally, in order to simulate movements resembling to those of humans, we develop an anthropomorphic model with higher number of degrees of freedom than the one of HRP-2. The generic solver is used to simulate motion on this new model. A sequence of tasks is defined to describe a scenario played by a human. By a simple qualitative analysis of motion, we demonstrate that taking into account the dynamics provides a natural way to generate human-like movements

    Dynamic Lifting Motion of Humanoid Robots

    No full text
    corecore