2 research outputs found

    Lifetime centric load balancing mechanism in wireless sensor network based IoT environment

    Get PDF
    Wireless sensor network (WSN) is a vital form of the underlying technology of the internet of things (IoT); WSN comprises several energy-constrained sensor nodes to monitor various physical parameters. Moreover, due to the energy constraint, load balancing plays a vital role considering the wireless sensor network as battery power. Although several clustering algorithms have been proposed for providing energy efficiency, there are chances of uneven load balancing and this causes the reduction in network lifetime as there exists inequality within the network. These scenarios occur due to the short lifetime of the cluster head. These cluster head (CH) are prime responsible for all the activity as it is also responsible for intra-cluster and inter-cluster communications. In this research work, a mechanism named lifetime centric load balancing mechanism (LCLBM) is developed that focuses on CH-selection, network design, and optimal CH distribution. Furthermore, under LCLBM, assistant cluster head (ACH) for balancing the load is developed. LCLBM is evaluated by considering the important metrics, such as energy consumption, communication overhead, number of failed nodes, and one-way delay. Further, evaluation is carried out by comparing with ES-Leach method, through the comparative analysis it is observed that the proposed model outperforms the existing model

    Dynamic Layered Dual-Cluster Heads Routing Algorithm Based on Krill Herd Optimization in UWSNs

    No full text
    Aimed at the limited energy of nodes in underwater wireless sensor networks (UWSNs) and the heavy load of cluster heads in clustering routing algorithms, this paper proposes a dynamic layered dual-cluster routing algorithm based on Krill Herd optimization in UWSNs. Cluster size is first decided by the distance between the cluster head nodes and sink node, and a dynamic layered mechanism is established to avoid the repeated selection of the same cluster head nodes. Using Krill Herd optimization algorithm selects the optimal and second optimal cluster heads, and its Lagrange model directs nodes to a high likelihood area. It ultimately realizes the functions of data collection and data transition. The simulation results show that the proposed algorithm can effectively decrease cluster energy consumption, balance the network energy consumption, and prolong the network lifetime
    corecore