12 research outputs found

    Learning Visual Reasoning Without Strong Priors

    Full text link
    Achieving artificial visual reasoning - the ability to answer image-related questions which require a multi-step, high-level process - is an important step towards artificial general intelligence. This multi-modal task requires learning a question-dependent, structured reasoning process over images from language. Standard deep learning approaches tend to exploit biases in the data rather than learn this underlying structure, while leading methods learn to visually reason successfully but are hand-crafted for reasoning. We show that a general-purpose, Conditional Batch Normalization approach achieves state-of-the-art results on the CLEVR Visual Reasoning benchmark with a 2.4% error rate. We outperform the next best end-to-end method (4.5%) and even methods that use extra supervision (3.1%). We probe our model to shed light on how it reasons, showing it has learned a question-dependent, multi-step process. Previous work has operated under the assumption that visual reasoning calls for a specialized architecture, but we show that a general architecture with proper conditioning can learn to visually reason effectively.Comment: Full AAAI 2018 paper is at arXiv:1709.07871. Presented at ICML 2017's Machine Learning in Speech and Language Processing Workshop. Code is at http://github.com/ethanjperez/fil

    Visual Concept Reasoning Networks

    Full text link
    A split-transform-merge strategy has been broadly used as an architectural constraint in convolutional neural networks for visual recognition tasks. It approximates sparsely connected networks by explicitly defining multiple branches to simultaneously learn representations with different visual concepts or properties. Dependencies or interactions between these representations are typically defined by dense and local operations, however, without any adaptiveness or high-level reasoning. In this work, we propose to exploit this strategy and combine it with our Visual Concept Reasoning Networks (VCRNet) to enable reasoning between high-level visual concepts. We associate each branch with a visual concept and derive a compact concept state by selecting a few local descriptors through an attention module. These concept states are then updated by graph-based interaction and used to adaptively modulate the local descriptors. We describe our proposed model by split-transform-attend-interact-modulate-merge stages, which are implemented by opting for a highly modularized architecture. Extensive experiments on visual recognition tasks such as image classification, semantic segmentation, object detection, scene recognition, and action recognition show that our proposed model, VCRNet, consistently improves the performance by increasing the number of parameters by less than 1%.Comment: Preprin
    corecore