1,883 research outputs found

    Full-fledged Real-Time Indexing for Constant Size Alphabets

    Full text link
    In this paper we describe a data structure that supports pattern matching queries on a dynamically arriving text over an alphabet ofconstant size. Each new symbol can be prepended to TT in O(1) worst-case time. At any moment, we can report all occurrences of a pattern PP in the current text in O(P+k)O(|P|+k) time, where P|P| is the length of PP and kk is the number of occurrences. This resolves, under assumption of constant-size alphabet, a long-standing open problem of existence of a real-time indexing method for string matching (see \cite{AmirN08})

    Near Optimal Parallel Algorithms for Dynamic DFS in Undirected Graphs

    Full text link
    Depth first search (DFS) tree is a fundamental data structure for solving graph problems. The classical algorithm [SiComp74] for building a DFS tree requires O(m+n)O(m+n) time for a given graph GG having nn vertices and mm edges. Recently, Baswana et al. [SODA16] presented a simple algorithm for updating DFS tree of an undirected graph after an edge/vertex update in O~(n)\tilde{O}(n) time. However, their algorithm is strictly sequential. We present an algorithm achieving similar bounds, that can be adopted easily to the parallel environment. In the parallel model, a DFS tree can be computed from scratch using mm processors in expected O~(1)\tilde{O}(1) time [SiComp90] on an EREW PRAM, whereas the best deterministic algorithm takes O~(n)\tilde{O}(\sqrt{n}) time [SiComp90,JAlg93] on a CRCW PRAM. Our algorithm can be used to develop optimal (upto polylog n factors deterministic algorithms for maintaining fully dynamic DFS and fault tolerant DFS, of an undirected graph. 1- Parallel Fully Dynamic DFS: Given an arbitrary online sequence of vertex/edge updates, we can maintain a DFS tree of an undirected graph in O~(1)\tilde{O}(1) time per update using mm processors on an EREW PRAM. 2- Parallel Fault tolerant DFS: An undirected graph can be preprocessed to build a data structure of size O(m) such that for a set of kk updates (where kk is constant) in the graph, the updated DFS tree can be computed in O~(1)\tilde{O}(1) time using nn processors on an EREW PRAM. Moreover, our fully dynamic DFS algorithm provides, in a seamless manner, nearly optimal (upto polylog n factors) algorithms for maintaining a DFS tree in semi-streaming model and a restricted distributed model. These are the first parallel, semi-streaming and distributed algorithms for maintaining a DFS tree in the dynamic setting.Comment: Accepted to appear in SPAA'17, 32 Pages, 5 Figure

    Web Queries: From a Web of Data to a Semantic Web?

    Get PDF

    Dynamic Range Majority Data Structures

    Full text link
    Given a set PP of coloured points on the real line, we study the problem of answering range α\alpha-majority (or "heavy hitter") queries on PP. More specifically, for a query range QQ, we want to return each colour that is assigned to more than an α\alpha-fraction of the points contained in QQ. We present a new data structure for answering range α\alpha-majority queries on a dynamic set of points, where α(0,1)\alpha \in (0,1). Our data structure uses O(n) space, supports queries in O((lgn)/α)O((\lg n) / \alpha) time, and updates in O((lgn)/α)O((\lg n) / \alpha) amortized time. If the coordinates of the points are integers, then the query time can be improved to O(lgn/(αlglgn)+(lg(1/α))/α))O(\lg n / (\alpha \lg \lg n) + (\lg(1/\alpha))/\alpha)). For constant values of α\alpha, this improved query time matches an existing lower bound, for any data structure with polylogarithmic update time. We also generalize our data structure to handle sets of points in d-dimensions, for d2d \ge 2, as well as dynamic arrays, in which each entry is a colour.Comment: 16 pages, Preliminary version appeared in ISAAC 201

    Managing Unbounded-Length Keys in Comparison-Driven Data Structures with Applications to On-Line Indexing

    Full text link
    This paper presents a general technique for optimally transforming any dynamic data structure that operates on atomic and indivisible keys by constant-time comparisons, into a data structure that handles unbounded-length keys whose comparison cost is not a constant. Examples of these keys are strings, multi-dimensional points, multiple-precision numbers, multi-key data (e.g.~records), XML paths, URL addresses, etc. The technique is more general than what has been done in previous work as no particular exploitation of the underlying structure of is required. The only requirement is that the insertion of a key must identify its predecessor or its successor. Using the proposed technique, online suffix tree can be constructed in worst case time O(logn)O(\log n) per input symbol (as opposed to amortized O(logn)O(\log n) time per symbol, achieved by previously known algorithms). To our knowledge, our algorithm is the first that achieves O(logn)O(\log n) worst case time per input symbol. Searching for a pattern of length mm in the resulting suffix tree takes O(min(mlogΣ,m+logn)+tocc)O(\min(m\log |\Sigma|, m + \log n) + tocc) time, where tocctocc is the number of occurrences of the pattern. The paper also describes more applications and show how to obtain alternative methods for dealing with suffix sorting, dynamic lowest common ancestors and order maintenance
    corecore