3 research outputs found

    Dynamic Job Ordering and Slot Configurations for MapReduce Workloads

    No full text
    MapReduce is a popular parallel computing paradigm for large-scale data processing in clusters and data centers. A MapReduce workload generally contains a set of jobs, each of which consists of multiple map tasks followed by multiple reduce tasks. Due to 1) that map tasks can only run in map slots and reduce tasks can only run in reduce slots, and 2) the general execution constraints that map tasks are executed before reduce tasks, different job execution orders and map/reduce slot configurations for a MapReduce workload have significantly different performance and system utilization. This paper proposes two classes of algorithms to minimize the makespan and the total completion time for an offline MapReduce workload. Our first class of algorithms focuses on the job ordering optimization for a MapReduce workload under a given map/reduce slot configuration. In contrast, our second class of algorithms considers the scenario that we can perform optimization for map/reduce slot configuration for a MapReduce workload. We perform simulations as well as experiments on Amazon EC2 and show that our proposed algorithms produce results that are up to 15 ~ 80 percent better than currently unoptimized Hadoop, leading to significant reductions in running time in practice

    Dynamic Job Ordering and Slot Configurations for MapReduce Workloads

    No full text

    Task Scheduling in Big Data Platforms: A Systematic Literature Review

    Get PDF
    Context: Hadoop, Spark, Storm, and Mesos are very well known frameworks in both research and industrial communities that allow expressing and processing distributed computations on massive amounts of data. Multiple scheduling algorithms have been proposed to ensure that short interactive jobs, large batch jobs, and guaranteed-capacity production jobs running on these frameworks can deliver results quickly while maintaining a high throughput. However, only a few works have examined the effectiveness of these algorithms. Objective: The Evidence-based Software Engineering (EBSE) paradigm and its core tool, i.e., the Systematic Literature Review (SLR), have been introduced to the Software Engineering community in 2004 to help researchers systematically and objectively gather and aggregate research evidences about different topics. In this paper, we conduct a SLR of task scheduling algorithms that have been proposed for big data platforms. Method: We analyse the design decisions of different scheduling models proposed in the literature for Hadoop, Spark, Storm, and Mesos over the period between 2005 and 2016. We provide a research taxonomy for succinct classification of these scheduling models. We also compare the algorithms in terms of performance, resources utilization, and failure recovery mechanisms. Results: Our searches identifies 586 studies from journals, conferences and workshops having the highest quality in this field. This SLR reports about different types of scheduling models (dynamic, constrained, and adaptive) and the main motivations behind them (including data locality, workload balancing, resources utilization, and energy efficiency). A discussion of some open issues and future challenges pertaining to improving the current studies is provided
    corecore