11 research outputs found

    Probabilistic Modeling in Dynamic Information Retrieval

    Get PDF
    Dynamic modeling is used to design systems that are adaptive to their changing environment and is currently poorly understood in information retrieval systems. Common elements in the information retrieval methodology, such as documents, relevance, users and tasks, are dynamic entities that may evolve over the course of several interactions, which is increasingly captured in search log datasets. Conventional frameworks and models in information retrieval treat these elements as static, or only consider local interactivity, without consideration for the optimisation of all potential interactions. Further to this, advances in information retrieval interface, contextual personalization and ad display demand models that can intelligently react to users over time. This thesis proposes a new area of information retrieval research called Dynamic Information Retrieval. The term dynamics is defined and what it means within the context of information retrieval. Three examples of current areas of research in information retrieval which can be described as dynamic are covered: multi-page search, online learning to rank and session search. A probabilistic model for dynamic information retrieval is introduced and analysed, and applied in practical algorithms throughout. This framework is based on the partially observable Markov decision process model, and solved using dynamic programming and the Bellman equation. Comparisons are made against well-established techniques that show improvements in ranking quality and in particular, document diversification. The limitations of this approach are explored and appropriate approximation techniques are investigated, resulting in the development of an efficient multi-armed bandit based ranking algorithm. Finally, the extraction of dynamic behaviour from search logs is also demonstrated as an application, showing that dynamic information retrieval modeling is an effective and versatile tool in state of the art information retrieval research

    A Survey of Quantum Theory Inspired Approaches to Information Retrieval

    Get PDF
    Since 2004, researchers have been using the mathematical framework of Quantum Theory (QT) in Information Retrieval (IR). QT offers a generalized probability and logic framework. Such a framework has been shown capable of unifying the representation, ranking and user cognitive aspects of IR, and helpful in developing more dynamic, adaptive and context-aware IR systems. Although Quantum-inspired IR is still a growing area, a wide array of work in different aspects of IR has been done and produced promising results. This paper presents a survey of the research done in this area, aiming to show the landscape of the field and draw a road-map of future directions

    Recherche d'information dynamique pour domaines complexes

    Get PDF
    Dans ce mémoire, nous traitons du sujet de la recherche d’information dynamique en milieu complexe. Celle-ci a pour but d’inclure l’utilisateur dans la boucle. Ainsi, l’utilisateur a la possibilité d’interagir avec le système en surlignant les passages pertinents et en indiquant le degré d’importance selon ses intérêts. Dans le domaine de la recherche d’information, les milieux complexes peuvent être définis comme des corpus de textes au sein desquels il est difficile de trouver une information à partir d’une requête générale. Par exemple, si l’utilisateur effectuait une recherche sur les impacts du virus Ebola durant la crise en Afrique en 2014-2015, il pourrait être intéressé par différents aspects liés à ce virus (économiques, de santé publique, etc.). Notre objectif est de modéliser ces différents aspects et de diversifier les documents présentés, afin de couvrir le maximum de ses intérêts. Dans ce mémoire, nous explorons différentes méthodes de diversification des résultats. Nous réalisons une étude de l’impact des entités nommées et des mots-clés contenus dans les passages issus du retour de l’utilisateur afin de créer une nouvelle requête qui affine la recherche initiale de l’utilisateur en trouvant les mots les plus pertinents par rapport à ce qu’il aura surligné. Comme l’interaction se base uniquement sur la connaissance acquise durant la recherche et celle-ci étant courte, puisque l’utilisateur ne souhaite pas une longue phase d’annotation, nous avons choisi de modéliser le corpus en amont, via les « word embeddings » ou plongements lexicaux, ce qui permet de contextualiser les mots et d’étendre les recherches à des mots similaires à notre requête initiale. Une approche de recherche dynamique doit, en outre, être capable de trouver un point d’arrêt. Ce point d’arrêt doit amener un équilibre entre trop peu et trop plein d’information, afin de trouver un bon compromis entre pertinence et couverture des intérêts

    Exploiting user signals and stochastic models to improve information retrieval systems and evaluation

    Get PDF
    The leitmotiv throughout this thesis is represented by IR evaluation. We discuss different issues related to effectiveness measures and novel solutions that we propose to address these challenges. We start by providing a formal definition of utility-oriented measurement of retrieval effectiveness, based on the representational theory of measurement. The proposed theoretical framework contributes to a better understanding of the problem complexities, separating those due to the inherent problems in comparing systems, from those due to the expected numerical properties of measures. We then propose AWARE, a probabilistic framework for dealing with the noise and inconsistencies introduced when relevance labels are gathered with multiple crowd assessors. By modeling relevance judgements and crowd assessors as sources of uncertainty, we directly combine the performance measures computed on the ground-truth generated by each crowd assessor, instead of adopting a classification technique to merge the labels at pool level. Finally, we investigate evaluation measures able to account for user signals. We propose a new user model based on Markov chains, that allows the user to scan the result list with many degrees of freedom. We exploit this Markovian model in order to inject user models into precision, defining a new family of evaluation measures, and we embed this model as objective function of an LtR algorithm to improve system performances

    Analyzing intentions from big data traces of human activities

    Get PDF
    The rapid growth of big data formed by human activities makes research on intention analysis both challenging and rewarding. We study multifaceted problems in analyzing intentions from big data traces of human activities, and such problems span a range of machine learning, optimization, and security and privacy. We show that analyzing intentions from industry-scale human activity big data can effectively improve the accuracy of computational models. Specifically, we take query auto-completion as a case study. We identify two hitherto-undiscovered problems: adaptive query auto-completion and mobile query auto-completion. We develop two computational models by analyzing intentions from big data traces of human activities on search interface interactions and on mobile application usage respectively. Solving the large-scale optimization problems in the proposed query auto-completion models drives deeper studies of the solvers. Hence, we consider the generalized machine learning problem settings and focus on developing lightweight stochastic algorithms as solvers to the large-scale convex optimization problems with theoretical guarantees. For optimizing strongly convex objectives, we design an accelerated stochastic block coordinate descent method with optimal sampling; for optimizing non-strongly convex objectives, we design a stochastic variance reduced alternating direction method of multipliers with the doubling-trick. Inevitably, human activities are human-centric, thus its research can inform security and privacy. On one hand, intention analysis research from human activities can be motivated from the security perspective. For instance, to reduce false alarms of medical service providers' suspicious accesses to electronic health records, we discover potential de facto diagnosis specialties that reflect such providers' genuine and permissible intentions of accessing records with certain diagnoses. On the other hand, we examine the privacy risk in anonymized heterogeneous information networks representing large-scale human activities, such as in social networking. Such data are released for external researchers to improve the prediction accuracy for users' online social networking intentions on the publishers' microblogging site. We show a negative result that makes a compelling argument: privacy must be a central goal for sensitive human activity data publishers

    Dynamic Information Retrieval Modeling

    No full text
    Big data and human-computer information retrieval (HCIR) are changing IR. They capture the dynamic changes in the data and dynamic interactions of users with IR systems. A dynamic system is one which changes or adapts over time or a sequence of events. Many modern IR systems and data exhibit these characteristics which are largely ignored by conventional techniques. What is missing is an ability for the model to change over time and be responsive to stimulus. Documents, relevance, users and tasks all exhibit dynamic behavior that is captured in data sets typically collected over long time spans and models need to respond to these changes. Additionally, the size of modern datasets enforces limits on the amount of learning a system can achieve. Further to this, advances in IR interface, personalization and ad display demand models that can react to users in real time and in an intelligent, contextual way. In this book we provide a comprehensive and up-to-date introduction to Dynamic Information Retrieval Modeling, the statistical modeling of IR systems that can adapt to change. We define dynamics, what it means within the context of IR and highlight examples of problems where dynamics play an important role. We cover techniques ranging from classic relevance feedback to the latest applications of partially observable Markov decision processes (POMDPs) and a handful of useful algorithms and tools for solving IR problems incorporating dynamics. The theoretical component is based around the Markov Decision Process (MDP), a mathematical framework taken from the field of Artificial Intelligence (AI) that enables us to construct models that change according to sequential inputs. We define the framework and the algorithms commonly used to optimize over it and generalize it to the case where the inputs aren't reliable. We explore the topic of reinforcement learning more broadly and introduce another tool known as a Multi-Armed Bandit which is useful for cases where exploring model parameters is beneficial. Following this we introduce theories and algorithms which can be used to incorporate dynamics into an IR model before presenting an array of state-of-the-art research that already does, such as in the areas of session search and online advertising. Change is at the heart of modern Information Retrieval systems and this book will help equip the reader with the tools and knowledge needed to understand Dynamic Information Retrieval Modeling

    Dynamic information retrieval modeling

    No full text
    corecore