856 research outputs found

    Graph Neural Networks for Particle Reconstruction in High Energy Physics detectors

    Full text link
    Pattern recognition problems in high energy physics are notably different from traditional machine learning applications in computer vision. Reconstruction algorithms identify and measure the kinematic properties of particles produced in high energy collisions and recorded with complex detector systems. Two critical applications are the reconstruction of charged particle trajectories in tracking detectors and the reconstruction of particle showers in calorimeters. These two problems have unique challenges and characteristics, but both have high dimensionality, high degree of sparsity, and complex geometric layouts. Graph Neural Networks (GNNs) are a relatively new class of deep learning architectures which can deal with such data effectively, allowing scientists to incorporate domain knowledge in a graph structure and learn powerful representations leveraging that structure to identify patterns of interest. In this work we demonstrate the applicability of GNNs to these two diverse particle reconstruction problems.Comment: Presented at NeurIPS 2019 Workshop "Machine Learning and the Physical Sciences

    Graph Neural Networks for Particle Reconstruction in High Energy Physics detectors

    Get PDF
    Pattern recognition problems in high energy physics are notably different from traditional machine learning applications in computer vision. Reconstruction algorithms identify and measure the kinematic properties of particles produced in high energy collisions and recorded with complex detector systems. Two critical applications are the reconstruction of charged particle trajectories in tracking detectors and the reconstruction of particle showers in calorimeters. These two problems have unique challenges and characteristics, but both have high dimensionality, high degree of sparsity, and complex geometric layouts. Graph Neural Networks (GNNs) are a relatively new class of deep learning architectures which can deal with such data effectively, allowing scientists to incorporate domain knowledge in a graph structure and learn powerful representations leveraging that structure to identify patterns of interest. In this work we demonstrate the applicability of GNNs to these two diverse particle reconstruction problems

    Compact & Capable: Harnessing Graph Neural Networks and Edge Convolution for Medical Image Classification

    Full text link
    Graph-based neural network models are gaining traction in the field of representation learning due to their ability to uncover latent topological relationships between entities that are otherwise challenging to identify. These models have been employed across a diverse range of domains, encompassing drug discovery, protein interactions, semantic segmentation, and fluid dynamics research. In this study, we investigate the potential of Graph Neural Networks (GNNs) for medical image classification. We introduce a novel model that combines GNNs and edge convolution, leveraging the interconnectedness of RGB channel feature values to strongly represent connections between crucial graph nodes. Our proposed model not only performs on par with state-of-the-art Deep Neural Networks (DNNs) but does so with 1000 times fewer parameters, resulting in reduced training time and data requirements. We compare our Graph Convolutional Neural Network (GCNN) to pre-trained DNNs for classifying MedMNIST dataset classes, revealing promising prospects for GNNs in medical image analysis. Our results also encourage further exploration of advanced graph-based models such as Graph Attention Networks (GAT) and Graph Auto-Encoders in the medical imaging domain. The proposed model yields more reliable, interpretable, and accurate outcomes for tasks like semantic segmentation and image classification compared to simpler GCNN
    • …
    corecore