632 research outputs found

    Dynamic priority allocation via restless bandit marginal productivity indices

    Full text link
    This paper surveys recent work by the author on the theoretical and algorithmic aspects of restless bandit indexation as well as on its application to a variety of problems involving the dynamic allocation of priority to multiple stochastic projects. The main aim is to present ideas and methods in an accessible form that can be of use to researchers addressing problems of such a kind. Besides building on the rich literature on bandit problems, our approach draws on ideas from linear programming, economics, and multi-objective optimization. In particular, it was motivated to address issues raised in the seminal work of Whittle (Restless bandits: activity allocation in a changing world. In: Gani J. (ed.) A Celebration of Applied Probability, J. Appl. Probab., vol. 25A, Applied Probability Trust, Sheffield, pp. 287-298, 1988) where he introduced the index for restless bandits that is the starting point of this work. Such an index, along with previously proposed indices and more recent extensions, is shown to be unified through the intuitive concept of ``marginal productivity index'' (MPI), which measures the marginal productivity of work on a project at each of its states. In a multi-project setting, MPI policies are economically sound, as they dynamically allocate higher priority to those projects where work appears to be currently more productive. Besides being tractable and widely applicable, a growing body of computational evidence indicates that such index policies typically achieve a near-optimal performance and substantially outperform benchmark policies derived from conventional approaches.Comment: 7 figure

    A Survey on Delay-Aware Resource Control for Wireless Systems --- Large Deviation Theory, Stochastic Lyapunov Drift and Distributed Stochastic Learning

    Full text link
    In this tutorial paper, a comprehensive survey is given on several major systematic approaches in dealing with delay-aware control problems, namely the equivalent rate constraint approach, the Lyapunov stability drift approach and the approximate Markov Decision Process (MDP) approach using stochastic learning. These approaches essentially embrace most of the existing literature regarding delay-aware resource control in wireless systems. They have their relative pros and cons in terms of performance, complexity and implementation issues. For each of the approaches, the problem setup, the general solution and the design methodology are discussed. Applications of these approaches to delay-aware resource allocation are illustrated with examples in single-hop wireless networks. Furthermore, recent results regarding delay-aware multi-hop routing designs in general multi-hop networks are elaborated. Finally, the delay performance of the various approaches are compared through simulations using an example of the uplink OFDMA systems.Comment: 58 pages, 8 figures; IEEE Transactions on Information Theory, 201

    Asymptotic optimality of maximum pressure policies in stochastic processing networks

    Full text link
    We consider a class of stochastic processing networks. Assume that the networks satisfy a complete resource pooling condition. We prove that each maximum pressure policy asymptotically minimizes the workload process in a stochastic processing network in heavy traffic. We also show that, under each quadratic holding cost structure, there is a maximum pressure policy that asymptotically minimizes the holding cost. A key to the optimality proofs is to prove a state space collapse result and a heavy traffic limit theorem for the network processes under a maximum pressure policy. We extend a framework of Bramson [Queueing Systems Theory Appl. 30 (1998) 89--148] and Williams [Queueing Systems Theory Appl. 30 (1998b) 5--25] from the multiclass queueing network setting to the stochastic processing network setting to prove the state space collapse result and the heavy traffic limit theorem. The extension can be adapted to other studies of stochastic processing networks.Comment: Published in at http://dx.doi.org/10.1214/08-AAP522 the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    EUROPEAN CONFERENCE ON QUEUEING THEORY 2016

    Get PDF
    International audienceThis booklet contains the proceedings of the second European Conference in Queueing Theory (ECQT) that was held from the 18th to the 20th of July 2016 at the engineering school ENSEEIHT, Toulouse, France. ECQT is a biannual event where scientists and technicians in queueing theory and related areas get together to promote research, encourage interaction and exchange ideas. The spirit of the conference is to be a queueing event organized from within Europe, but open to participants from all over the world. The technical program of the 2016 edition consisted of 112 presentations organized in 29 sessions covering all trends in queueing theory, including the development of the theory, methodology advances, computational aspects and applications. Another exciting feature of ECQT2016 was the institution of the TakĂĄcs Award for outstanding PhD thesis on "Queueing Theory and its Applications"
    • 

    corecore