3,921 research outputs found

    Dynamic connectivity in wireless underground sensor networks

    Get PDF
    In wireless underground sensor networks (WUSNs), due to the dynamic underground channel characteristics and the heterogeneous network architecture, the connectivity analysis is much more complicated than in the terrestrial wireless sensor networks and ad hoc networks, which was not addressed before, to our knowledge. In this paper, a mathematical model is developed to analyze the dynamic connectivity in WUSNs, which captures the effects of environmental parameters such as the soil composition and the random soil moisture, and system parameters such as the operating frequency, the sensor burial depth, the sink antenna height, the density of the sensor and sink devices, the tolerable latency of the networks, and the number and the mobility of the above-ground sinks. The lower and upper bounds of the connectivity probability are derived to analytically provide principles and guidelines for the design and deployment of WUSNs in various environmental conditions.US National Science Foundation (NSF) Grant No. CCF-0728889http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=7742ai201

    Optimisation of Mobile Communication Networks - OMCO NET

    Get PDF
    The mini conference “Optimisation of Mobile Communication Networks” focuses on advanced methods for search and optimisation applied to wireless communication networks. It is sponsored by Research & Enterprise Fund Southampton Solent University. The conference strives to widen knowledge on advanced search methods capable of optimisation of wireless communications networks. The aim is to provide a forum for exchange of recent knowledge, new ideas and trends in this progressive and challenging area. The conference will popularise new successful approaches on resolving hard tasks such as minimisation of transmit power, cooperative and optimal routing

    Robotic Wireless Sensor Networks

    Full text link
    In this chapter, we present a literature survey of an emerging, cutting-edge, and multi-disciplinary field of research at the intersection of Robotics and Wireless Sensor Networks (WSN) which we refer to as Robotic Wireless Sensor Networks (RWSN). We define a RWSN as an autonomous networked multi-robot system that aims to achieve certain sensing goals while meeting and maintaining certain communication performance requirements, through cooperative control, learning and adaptation. While both of the component areas, i.e., Robotics and WSN, are very well-known and well-explored, there exist a whole set of new opportunities and research directions at the intersection of these two fields which are relatively or even completely unexplored. One such example would be the use of a set of robotic routers to set up a temporary communication path between a sender and a receiver that uses the controlled mobility to the advantage of packet routing. We find that there exist only a limited number of articles to be directly categorized as RWSN related works whereas there exist a range of articles in the robotics and the WSN literature that are also relevant to this new field of research. To connect the dots, we first identify the core problems and research trends related to RWSN such as connectivity, localization, routing, and robust flow of information. Next, we classify the existing research on RWSN as well as the relevant state-of-the-arts from robotics and WSN community according to the problems and trends identified in the first step. Lastly, we analyze what is missing in the existing literature, and identify topics that require more research attention in the future

    Smart Computing and Sensing Technologies for Animal Welfare: A Systematic Review

    Get PDF
    Animals play a profoundly important and intricate role in our lives today. Dogs have been human companions for thousands of years, but they now work closely with us to assist the disabled, and in combat and search and rescue situations. Farm animals are a critical part of the global food supply chain, and there is increasing consumer interest in organically fed and humanely raised livestock, and how it impacts our health and environmental footprint. Wild animals are threatened with extinction by human induced factors, and shrinking and compromised habitat. This review sets the goal to systematically survey the existing literature in smart computing and sensing technologies for domestic, farm and wild animal welfare. We use the notion of \emph{animal welfare} in broad terms, to review the technologies for assessing whether animals are healthy, free of pain and suffering, and also positively stimulated in their environment. Also the notion of \emph{smart computing and sensing} is used in broad terms, to refer to computing and sensing systems that are not isolated but interconnected with communication networks, and capable of remote data collection, processing, exchange and analysis. We review smart technologies for domestic animals, indoor and outdoor animal farming, as well as animals in the wild and zoos. The findings of this review are expected to motivate future research and contribute to data, information and communication management as well as policy for animal welfare

    Modulation Schemes and Connectivity in Wireless Underground Channel

    Get PDF
    In this chapter, a thorough treatment of the modulation schemes for UG Wireless is presented. The effects of soil texture and water content on the capacity of multi-carrier modulation in WUC are discussed. The multi-carrier capacity model results are analyzed. Moreover, the underground MIMO design for underground communications is explained thoroughly. An analysis of medium access in wireless underground is done as well. Furthermore, the soil properties are considered for cross-layer communications of UG wireless. The performance analysis of traditional modulation schemes is also considered. The soil moisture-based modulation approach is also explored in this chapter. The connectivity and diversity reception approaches are discussed for wireless underground communications. The connectivity and interference models are studied for Ad-Hoc and Hybrid Networks. The topology control mechanisms for maintaining network connectivity are explored for maximizing network capacity under the physical models (e.g., the protocol interference model and physical interference model). Moreover, the underground diversity is examined for 3W-Rake receiver and coherent detection along with experimental evaluation and comprehensive analysis of performance of equalization techniques
    • …
    corecore