6 research outputs found

    Automatic Image Annotation Based on Particle Swarm Optimization and Support Vector Clustering

    Get PDF
    With the progress of network technology, there are more and more digital images of the internet. But most images are not semantically marked, which makes it difficult to retrieve and use. In this paper, a new algorithm is proposed to automatically annotate images based on particle swarm optimization (PSO) and support vector clustering (SVC). The algorithm includes two stages: firstly, PSO algorithm is used to optimize SVC; secondly, the trained SVC algorithm is used to annotate the image automatically. In the experiment, three datasets are used to evaluate the algorithm, and the results show the effectiveness of the algorithm

    GAdaboost: Accelerating adaboost feature selection with genetic algorithms

    Get PDF
    Throughout recent years Machine Learning has acquired attention, due to the abundant data. Thus, devising techniques to reduce the dimensionality of data has been on going. Object detection is one of the Machine Learning techniques which suffer from this draw back. As an example, one of the most famous object detection frameworks is the Viola-Jones Rapid Object Detector, which suffers from a lengthy training process due to the vast search space, which can reach more than 160,000 features for a 24X24 image. The Viola-Jones Rapid Object Detector also uses Adaboost, which is a brute force method, and is required to pass by the set of all possible features in order to train the classifiers. Consequently, ways for reducing the whole feature set into a smaller representative one, eliminating those features that have non relevant information, were devised. The most commonly used technique for this is Feature Selection with its three categories: Filters, Wrappers and Embedded. Feature Selection has proven its success in providing fast and accurate classifiers. Wrapper methods harvest the power of evolutionary computing, most commonly Genetic Algorithms, in finding the set of representative features. This is mostly due to the Advantage of Genetic Algorithms and their power in finding adequate solutions more efficiently. In this thesis we propose GAdaboost: A Genetic Algorithm to accelerate the training procedure of the Viola-Jones Rapid Object Detector through Feature Selection. Specifically, we propose to limit the Adaboost search within a sub-set of the huge feature space, while evolving this subset following a Genetic Algorithm. Experiments demonstrate that our proposed GAdaboost is up to 3.7 times faster than Adaboost. We also demonstrate that the price of this speedup is a mere decrease (3%, 4%) in detection accuracy when tested on FDDB benchmark face detection set, and Caltech Web Faces respectivel

    A Survey on Evolutionary Computation Approaches to Feature Selection

    Get PDF
    Feature selection is an important task in data mining and machine learning to reduce the dimensionality of the data and increase the performance of an algorithm, such as a classification algorithm. However, feature selection is a challenging task due mainly to the large search space. A variety of methods have been applied to solve feature selection problems, where evolutionary computation (EC) techniques have recently gained much attention and shown some success. However, there are no comprehensive guidelines on the strengths and weaknesses of alternative approaches. This leads to a disjointed and fragmented field with ultimately lost opportunities for improving performance and successful applications. This paper presents a comprehensive survey of the state-of-the-art work on EC for feature selection, which identifies the contributions of these different algorithms. In addition, current issues and challenges are also discussed to identify promising areas for future research.</p

    Individual and ensemble functional link neural networks for data classification

    Full text link
    This study investigated the Functional Link Neural Network (FLNN) for solving data classification problems. FLNN based models were developed using evolutionary methods as well as ensemble methods. The outcomes of the experiments covering benchmark classification problems, positively demonstrated the efficacy of the proposed models for undertaking data classification problems
    corecore