
American University in Cairo American University in Cairo

AUC Knowledge Fountain AUC Knowledge Fountain

Theses and Dissertations

2-1-2016

GAdaboost: Accelerating adaboost feature selection with genetic GAdaboost: Accelerating adaboost feature selection with genetic

algorithms algorithms

Mai Tolba

Follow this and additional works at: https://fount.aucegypt.edu/etds

Recommended Citation Recommended Citation

APA Citation
Tolba, M. (2016).GAdaboost: Accelerating adaboost feature selection with genetic algorithms [Master’s
thesis, the American University in Cairo]. AUC Knowledge Fountain.
https://fount.aucegypt.edu/etds/553

MLA Citation
Tolba, Mai. GAdaboost: Accelerating adaboost feature selection with genetic algorithms. 2016. American
University in Cairo, Master's thesis. AUC Knowledge Fountain.
https://fount.aucegypt.edu/etds/553

This Thesis is brought to you for free and open access by AUC Knowledge Fountain. It has been accepted for
inclusion in Theses and Dissertations by an authorized administrator of AUC Knowledge Fountain. For more
information, please contact mark.muehlhaeusler@aucegypt.edu.

https://fount.aucegypt.edu/
https://fount.aucegypt.edu/etds
https://fount.aucegypt.edu/etds?utm_source=fount.aucegypt.edu%2Fetds%2F553&utm_medium=PDF&utm_campaign=PDFCoverPages
https://fount.aucegypt.edu/etds/553?utm_source=fount.aucegypt.edu%2Fetds%2F553&utm_medium=PDF&utm_campaign=PDFCoverPages
https://fount.aucegypt.edu/etds/553?utm_source=fount.aucegypt.edu%2Fetds%2F553&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:mark.muehlhaeusler@aucegypt.edu

The American University in Cairo

School of Science and Engineering

GAdaboost: Accelerating Adaboost Feature

Selection with Genetic Algorithms

A Thesis Submitted to the Department of Computer Science and Engineering

in Partial Fulfillment of the Requirements for the Degree of Master of Science

By

Mai Mohamed Tolba

Under The Supervision of

Prof. Mohamed Moustafa

Fall 2016

ii

ACKNOWLEDGEMENTS

In the name of Allah the most gracious and most merciful

I would like to thank my supervisor Dr. Mohamed Moustafa, for his continuous support

and guidance throughout this project. It was really an honor to be taught by such a great

professor. I would also like to express my gratitude to my thesis committee members Dr. Amr

Gonied and Dr. Hazem Abbas for their helpful feedback.

I would like to thank my father Prof. Mohamed Tolba for his constant guidance, support

and encouragement. My mother Galila for her endless love and care. My brother Ahmed for

his guidance. My sister Amal, my cousin Aeysha, my sister in law Ghada, my best friend Dalia

and my husband Tarek for always being there for me and pushing me to do my best. Without

you all this thesis would have not been complete.

iii

ABSTRACT

Throughout recent years Machine Learning has acquired attention, due to the abundant

data. Thus, devising techniques to reduce the dimensionality of data has been on going. Object

detection is one of the Machine Learning techniques which suffer from this draw back. As an

example, one of the most famous object detection frameworks is the Viola-Jones Rapid Object

Detector, which suffers from a lengthy training process due to the vast search space, which can

reach more than 160,000 features for a 24X24 image. The Viola-Jones Rapid Object Detector

also uses Adaboost, which is a brute force method, and is required to pass by the set of all

possible features in order to train the classifiers.

Consequently, ways for reducing the whole feature set into a smaller representative one,

eliminating those features that have non relevant information, were devised. The most

commonly used technique for this is Feature Selection with its three categories: Filters,

Wrappers and Embedded. Feature Selection has proven its success in providing fast and

accurate classifiers. Wrapper methods harvest the power of evolutionary computing, most

commonly Genetic Algorithms, in finding the set of representative features. This is mostly due

to the Advantage of Genetic Algorithms and their power in finding adequate solutions more

efficiently.

In this thesis we propose GAdaboost: A Genetic Algorithm to accelerate the training

procedure of the Viola-Jones Rapid Object Detector through Feature Selection. Specifically,

we propose to limit the Adaboost search within a sub-set of the huge feature space, while

evolving this subset following a Genetic Algorithm. Experiments demonstrate that our

proposed GAdaboost is up to 3.7 times faster than Adaboost. We also demonstrate that the

price of this speedup is a mere decrease (3%, 4%) in detection accuracy when tested on FDDB

benchmark face detection set, and Caltech Web Faces respectively.

iv

TABLE OF CONTENTS

Contents

ACKNOWLEDGEMENTS .. II

ABSTRACT .. III

TABLE OF CONTENTS .. IV

LIST OF FIGURES .. VII

LIST OF TABLES ... IX

LIST OF ABBREVIATIONS ... X

CHAPTER (1): INTRODUCTION ... 1

1.1 PROBLEM DEFINITION ... 2
1.2 MOTIVATION ... 2

1.2.1 Primary Experiments .. 4
1.3 ORGANIZATION OF THE THESIS ... 6

CHAPTER (2): BACKGROUND ... 7

2.1 OBJECT DETECTION BACKGROUND ... 7
2.1.1 Viola-Jones Rapid Object Detector .. 7

2.2 ENHANCEMENTS OVER VIOLA-JONES ... 12

2.2.1 The use of SVMs and new stopping criteria .. 12

2.2.2 Increasing Haar Features .. 13
2.3 FEATURE SELECTION. ... 15

2.3.1 Filters .. 15
2.3.2 Wrappers .. 16
2.3.3 Embedded ... 16

2.4 GENETIC ALGORITHMS ... 17
2.4.1 Overview .. 17
2.4.2 GA Details .. 19
2.4.3 Strength of GAs .. 24

2.5 FEATURE SELECTION WITH GAS ... 27
2.5.1 Work that utilizes GA with feature selection. 27

2.6 SUMMARY ... 29

v

CHAPTER (3): PROPOSED APPROACH ... 30

3.1 OPENCV ... 30
3.2 GADABOOST OVERVIEW... 31
3.3 GA DETAILS ... 35

3.3.1 Initial population .. 35
3.3.2 Chromosome Representation ... 35
3.3.3 Fitness Function ... 36
3.3.4 Selection Mechanism ... 37
3.3.5 Crossover .. 37

3.3.6 Mutation ... 38

CHAPTER (4) EXPERIMENTS ... 39

4.1 TRAINING .. 39
4.1.1 Positive images ... 39
4.1.2 Negative images ... 40
4.1.3 Training Parameters. .. 40
4.1.4 Resultant trained classifier ... 42

4.2 TESTING .. 43
4.2.1 Datasets .. 43
4.2.2 Detection with OpenCV. .. 44

4.2.3 Evaluation Tools .. 45
4.3 INDIVIDUAL AND POPULATION FITNESS .. 47

4.3.1 Objective .. 47
4.3.2 Method ... 47

4.3.3 Results .. 47
4.3.4 Discussion .. 47

4.4 POPULATION SIZE VERSUS TRAINING TIME ... 48
4.4.1 Objective .. 48
4.4.2 Method ... 48

4.4.3 Results .. 48
4.4.4 Discussion .. 49

4.5 BASELINE .. 49

4.5.1 Objective .. 49
4.5.2 Method ... 49

4.5.3 Results .. 49

4.5.4 Discussion .. 51

4.6 GADABOOST 20 ITERATIONS ... 51
4.6.1 Objective .. 51
4.6.2 Method ... 52

4.6.3 Results .. 52
4.6.4 Discussion .. 54

4.7 GADABOOST 50 ITERATION .. 55
4.7.1 Objective .. 55
4.7.2 Method ... 55
4.7.3 Results .. 56

4.7.4 Discussion .. 58
4.8 TRAINING SPEED VERSUS ACCURACY ... 59

4.8.1 Objective .. 59

vi

4.8.2 Results .. 59
4.8.3 Discussion .. 62

CHAPTER (5): CONCLUSIONS ... 64

5.1 CONTRIBUTIONS ... 64

5.2 FUTURE WORK ... 65

REFERENCES ... 66

vii

LIST OF FIGURES

Figure1-1: The effect of varying the image size on the number of features 4

Figure 1-2: The effect of increasing Haar feature types on the total number of features

per a 24x24 image .. 5

Figure 2-1: Haar features relative to the enclosing detection window (Viola & Jones,

2001) .. 8

Figure 2-2: Integral image illustration(Viola & Jones, 2001).. 9

Figure 2-3: Adaboost Algorithm(Viola & Jones, 2001) .. 10

Figure 2-4 Schematic description of a detection cascade(Viola & Jones, 2001) 11

Figure 2-5: Roc Curve for detector on MIT+CMU dataset (Viola & Jones, 2001)..... 12

Figure 2-6 Object detection average precision on selected objects (top 40 in 113 test

image)(Q. Li et al., 2012) ... 13

Figure 2-7 Extended set of Haar features black and white regions have negative and

positive weights (Lienhart & Maydt, 2002) .. 14

Figure 2-8: Basic versus extended features set. (Lienhart & Maydt, 2002) 15

Figure 2-9: How GAs Work (Lee & Lee, 2014) .. 19

Figure 2-10: Single point Crossover (Hasançebi & Erbatur, 2000) 19

Figure 2-11: Two-point crossover (Hasançebi & Erbatur, 2000) 20

Figure 2-12: Uniform crossover(Hasançebi & Erbatur, 2000) 20

Figure 2-13 Tournament selection(Noraini & Geraghty, 2011) 21

Figure 2-14 Roulette wheel selection (Noraini & Geraghty, 2011) 23

Figure 2-15: Comparison of mean cutsizes (Manikas & Cain, 1996) 26

Figure 3-1 GAdaboost algorithm flowchart ... 32

Figure 3-2 Population illustration .. 35

Figure 3-3 Chromosome to feature mapping ... 36

viii

Figure 3-4 GAdaboost crossover illustration ... 38

Figure 4-1 Positive training images ... 40

Figure 4-2 Negative images samples ... 40

Figure 4-3 Opencv_traincascade parameters ... 41

Figure 4-4 Resultant cascade classifier .. 42

Figure 4-5 Example of a stored stage of resultant classifier .. 43

Figure 4-6 Example of annotated FDDB dataset(Jain & Learned-Miller, 2010). 44

Figure 4-7 Best individual fitness and average population fitness over 50 iterations . 47

Figure 4-8 Population size vs training time. .. 48

Figure 4-9 Examples of detection of baseline on images .. 50

Figure 4-10: Baseline performance on FDDB dataset ... 50

Figure 4-11: Baseline performance on the Caltech dataset ... 51

Figure 4-12: Examples of detection of Gadaboost20 on images 53

Figure 4-13: ROC curve of multiple GAdaboost20 Classifiers on FDDB 54

Figure 4-14: ROC curve of multiple GAdaboost20 Classifiers on Caltech................. 54

Figure 4-15: Example of detections of GAdaboost50 ... 57

Figure 4-16: ROC curve of multiple GAdaboost50 Classifiers on FDDB 57

Figure 4-17 ROC curve of multiple GAdaboost50 Classifiers on Caltech 58

Figure 4-18 Training time in minutes of each of the experiments. 60

Figure 4-19 Y error bars for all the runs of the 20 iterations GAdaBoost on FDDB. . 60

Figure 4-20: Y error bars for all the runs of the 50 iterations GAdaBoost on FDDB . 61

Figure 4-21: Y error bars for all the runs of the 20 iterations GAdaBoost on Caltech

Web Faces. ... 61

Figure 4-22: Y error bars for all the runs of the 50 iterations GAdaBoost on Caltech

Web Faces. ... 62

ix

LIST OF TABLES

Table 1-1 Comparison between Brute Force and GA in TSP .. 6

Table 2-1: Number of features inside a 24X24 image for each prototype (Lienhart &

Maydt, 2002) .. 14

Table 2-2: Summary of feature selection techniques .. 17

Table 2-3 Discrimination results on synthetic images (Ayala-ramirez et al., 2006) ... 24

Table 2-4 Discrimination results on natural images (Ayala-ramirez et al., 2006) 24

Table 2-5: comparison on Caltech dataset to other methods 25

Table 3-1 Comparison of OpenCV Application used to train a cascade classifier. 31

Table 4-1 Training time for each run of training GAdaboost 20 52

Table 4-2 Training time for each run of training GAdaboost 50 56

Table 4-3 Summary of performance of the baseline, GAdaboost50, and GAdaboost20

.. 63

x

LIST OF ABBREVIATIONS

ACO Ant Colony Optimization

CV Computer Vision

EC Evolutionary Computing

EA Evolutionary Algorithms

FDDB Face Detection Database

GA Genetic Algorithms

HOG Histogram of Gradients

LBP Local Binary Patterns

ML Machine Learning

OpenCV Open Source Computer Vision Library

PSO Particle Swarm Optimization

ROC Receiver Operator Curve

SFS Sequential Forward Selection

SBS Sequential Backward Selection

SVM Support Vector Machine

TBB Threading Building Blocks

TSP Travelling Salesman Problem

1

CHAPTER (1): INTRODUCTION

Machine learning and training require large feature sets, which can be time consuming

to explore. With the advancements in this field the need for algorithms to decrease the training

time arises. Genetic Algorithms (GA) have proven their strength in solving problems like the

aforementioned one, especially those concerned with exploring large search spaces and

providing acceptable results in a significantly reduced amount of time than that of the brute

force manner. Many researches have explored the use of GA in time consuming tasks like

Feature Selection, which aims to choose a representative small sub-set of features from the

whole set of features (B Xue, Zhang, Browne, & Yao, 2016).

Object detection lies in the set of machine learning techniques that require a huge search

space for training, thus their training is time consuming. Object detection is concerned with

detecting whether an object is present in a given image and where it lies in this image. It has

many applications including but not limited to, face detectors in all modern state of the art

cameras, automotive safety, video indexing, image classification, surveillance and content-

based image retrieval (Lillywhite, Lee, Tippetts, & Archibald, 2013).

A lot of research has been applied to this area, due to its complex nature as detection is

hard to achieve in different light conditions, occlusion and the angle in which the object appears

in the image (Lienhart & Maydt, 2002; Lillywhite et al., 2013; Viola & Jones, 2001).

Researchers have been trying to implement efficient high speed detectors that work in real time

and have a high percentage of accuracy. Though the Viola-Jones detector has reached an

impressive detection speed, it still consumes a lot of time in training. Viola-Jones uses

Adaboost, a type of boosting algorithms, to select and combine weak classifiers to form a strong

one. Adaboost is simple and adaptive (Dezhen & Kai, 2008), yet it operates in a brute force

manner, passing by the set of all features multiple times. This can be very time consuming, as

the search space consists of a set of more than 160,000 features for a 24X24 image.

This thesis is multi-disciplinary, as it deals with three sub-research areas in Computer

Science. The three main areas are Computer Vision (CV), Machine Learning (ML) and

Statistics, and Evolutionary Computing (EC). This thesis’s main focus is on Object detection

which lies under CV, Boosting and Feature Selection which is a sub-area of ML and Genetic

Algorithms with is a famous algorithm in EC. In brief this work aims towards enhancing the

training time taken by the Adaboost algorithm through Feature Selection using Genetic

2

Algorithms. Specifically it aims to speed up the training process of the Viola-Jones Rapid

Object Detector by finding a small set of representative features to be provided to the Adaboost

algorithm, instead of the original method of going through the set of all possible features in a

brute force manner.

1.1 Problem Definition

Having Robust and efficient detectors has become the goal of many research over many

years. An ideal detector can be described as one that is both efficient and provides plausible

results. A lot of research has been done in order to enhance several machine learning techniques

and try to reach the previously mentioned goal of ideal detectors.

Though Boosting algorithms like Adaboost are simple and effective, they suffer from

lengthy training processes due to their brute force nature. With the advancement of Machine

Learning and the abundance of data in recent years (Yusta, 2009), the drawback of these

algorithms becomes more apparent, as the dimensionality and the volume of data directly affect

the training time. For example, in the training of the Viola-Johns Rapid Object detector, the

Adaboost algorithm goes through the set of all possible features in a brute force manner, for

the training of each weak classifier. This can be very time consuming, as the search space

consists of a set of more than 160,000 features for a 24X24 image (Viola & Jones, 2001). Some

of the formerly mentioned features are non-representative as they have poor predictive power

of the object’s existence in this image. Selecting a representative set of features and discarding

the non-useful ones can be achieved through Feature Selection. Feature selection, allows for

the decrease of the search space with minimum loss of quality, as it focuses on eliminating

those features that are not useful when solving the problem at hand. Applying this concept to

the Adaboost algorithm will help in overcoming the drawback of its lengthy training process

while benefiting from its simplicity and adaptively.

1.2 Motivation

The Viola-Jones object detector uses a cascaded stage classifier in order to rapidly

detect objects. However, the training of this classifier is time consuming, since the training

algorithm utilized is Adaboost which works by going through the set of all possible features to

3

evaluate each feature in a brute force manner to choose one weak classifier. This process takes

place multiple times as the essence of boosting is to combine multiple weak classifiers to get a

strong one. The cascaded structure makes training even slower as the previously mentioned

process is repeated for each stage of the cascaded classifier. The number of times the Adaboost

algorithm passes through the set of all possible features to train a cascade classifier, can be

obtained by summing up the number of weak classifiers in all the stages as shown in Equation

1.1, where WC is the number of weak classifiers per stage, and n is the number of stages in the

cascade classifier.

𝑖𝑡𝑒𝑟𝑠 = ∑ 𝑊𝐶𝑖

𝑛

𝑖=0

 (1.1)

Examining the set of all possible features multiple times can be analogous to expanding

the feature set. In order to have a deeper understanding of the effects of repeating the number

of iterations a look at how much the feature set expands is necessary. The total number of

features examined in training a cascade classifier is obtained by multiplying the number of

iteration done by the Adaboost algorithm by the total number of features in the original feature

set as shown in Equation 1.2, where TF is the total number of features examined, iters in the

number of times the Adboost passes by the original search space (which can be obtained from

Equation 1.1), and osp is the number of features in the original search space

𝑇𝐹 = 𝑖𝑡𝑒𝑟𝑠 ∗ 𝑜𝑠𝑝 (1.2)

 As an example, if we built a simple 5 stage classifier and the number of features are 10,

15, 20, 25, 30 in stages 1, 2, 3, 4 and 5 respectively, then the total number of times the Adaboost

passed by the set of all possible features (the original search space) in the trainng phase can be

calculated by summing up the number of features, i.e. 10+15+20+25+30 which is equal to 100

in this final trained classifier, which is analogous to an increased search space by a 100 times,

as the Adaboost would have passed by 160,00000 features if the original search space had

160,000 features (160,000 X 100 from Equation 1.2)

In conclusion, by eliminating the unnecessary features, the time taken to train a cascade

classifier can be significantly reduced. This can be achieved by the means of Feature Selection,

where the best features are chosen and the unnecessary ones are discarded. Feature Selection

can be achieved by exploiting GAs, since GAs are widely used heuristics in Feature Selection

(Tsai, Eberle, & Chu, 2013). Another motivation for using GA with Feature Selection is that

4

inducing GAs and Feature Selection mechanisms have been continuously studied for decades

(Chaaraoui & Flórez-Revuelta, 2013; Yusta, 2009) and have proven to be successful.

1.2.1 Primary Experiments

This section provides 2 experiments to support the motivation of this work. It shows

evidence of how vast the search space of features can be by examining the effect of increasing

Haar feature types on the total number of features and the effect of image size of the number

of features in the search space. Moreover, an experiment was done to compare the brute force

technique versus the GAs in solving the Travelling Salesman Problem.

1.2.1.1 Number of Features Per image

The main problem to be dealt with in order to enhance the performance of the Viola-

Jones detector, is the vast search space. To give an idea of how vast this search space can get;

a simple experiment has been carried out. This experiment calculates the number of features

(the search space) once when varying the image dimensions and another when increasing the

types of Haar features. This experiment considers getting all possible sizes of each feature and

all possible positions by shifting the window one pixel. Figure1-1 shows the exponential

growth of the search space when increasing the image dimensions. Figure 1-2 also shows the

growth of the search space by increasing the types of Haar features used.

Figure1-1: The effect of varying the image size on the number of features

5

Figure 1-2: The effect of increasing Haar feature types on the total number of features per a 24x24 image

1.2.1.2 Performance of GA in Travelling Salesman Problem (TSP)

With a vast search space the main problem is time. It’s a time consuming process to go

through the search space one by one in a brute force manner (as done by the original Viola-

Jones implementation). The former point is the motive for this work, since Genetic algorithms

in general are efficient in searching large spaces (Lillywhite et al., 2013). To further show the

effectiveness of GA on speed and accuracy an experiment was conducted. The famous

Travelling Salesman Problem (TSP) has been examined once using brute force and once using

Genetic Algorithms (implementation used was done by (Jacobson, 2012)). The Travelling

Salesman Problem is concerned with finding the shortest route of a journey between given

countries. For this experiment the same 9 countries have been used for both the GA and the

brute force methods. The brute force method is done by exploring all the possible routes (which

are 9! (362880) routes) in this case, then choosing the shortest one. The results of the

experiment show that the GA achieved a comparable accuracy by evaluation a 100 generations

in only 5.9% of the time taken by the brute force method. Table 1-1 shows the exact results of

the timing and the shortest distance found by both the brute force and the GA.

6

Table 1-1 Comparison between Brute Force and GA in TSP

1.3 Organization of the Thesis

The rest of the thesis is organized as follows: Chapter 2 provides a comprehensive

background on the main topics covered in this thesis, like the Viola-Jones Rapid Object

Detector and the enhancements done over their work. Basic Genetic Algorithm concepts are

discussed and previous work proving their strength is reviewed. Feature Selection concepts and

terminology are provided. Finally previous work that utilizes Genetic Algorithms in Feature

Selection is examined. Chapter 3 explains the proposed method, while providing details on

implementation and tools used. Chapter 4 explains the experimental setup and details of the

experiments provided. Chapter 5 concludes the thesis and discusses future work.

7

CHAPTER (2): BACKGROUND

This chapter provides background on the three main concepts used in this work, by

discussing the Viola-Jones object detector. Details on Viola-Jones Rapid Object Detector and

some of the research that aims to enhance this detector are provided, since the enhancement of

the training time of this detector is the main objective of this work. After that an overview on

GAs and their main concepts are discussed, with some previous work that sheds light on the

success and wide usage of these algorithms. Feature Selection is then mentioned, with their

categorization and main concepts. Finally previous work that combined both Feature Selection

and Genetic Algorithm is presented.

2.1 Object Detection background

As this research area is relatively new, as mentioned by Hjelmas et al. (Hjelmås & Low,

2001) that the face detection problem has attained little attention before 1998 (Amit, Geman,

& Jedynak, 1998). This is apparently not the case now since this area has gained more attention

by the time that Herman et al. conducted their survey (Hjelmås & Low, 2001). Since then many

researchers have focused on this area. Scientists have been working and contributing to

detectors over the past decade. Viola-Jones is an example of widely used detectors. This section

will provide a brief introduction on this detectors; since it provides the basis for this research.

2.1.1 Viola-Jones Rapid Object Detector

Viola et al. devised a rapid object detector, with 3 major contributions. The first

contribution is that they provided an image representation called the integral image that allows

the features to be evaluated fast. Their second contribution is that they devised a method for

construction of the classifier though the selection of important features using Adaboost. Their

third contribution is successively combining complex classifiers in a cascade structure which

allows for fast detection on the test images (Viola & Jones, 2001).

The basic and main 3 components of the Viola-Jones classifiers are:

 The Haar features

 Integral Image

 Adaboost

 Cascaded structure

8

2.1.1.1 Haar Features

The use of features has proven to be better than using pixels, as features proved a set of

comprehensive information that can be learned by machine learning algorithms. Features

reduce the in-out class variability compared to that of the raw pixels (Lienhart & Maydt, 2002;

Viola & Jones, 2001). This is in general, a clear incentive that provides more reasons to use

features instead of raw data. For this particular system a critical issue is speed of calculation

and the features operate much faster than raw pixels (Viola & Jones, 2001). The Haar features

used are shown in Figure 2-1. The value of the feature is obtained by subtracting the sum of

the pixels in the white region from the sum of the pixels in the black region. The four features

used are those that are best for distinguishing upright front-facing faces. For example, feature

(c) in Figure 2-1 can detect the nose area as its lighter than the eyes and feature (a) can detect

eyes as the eyes region is darker than the region under it (Viola & Jones, 2001). For each image,

each of the four Haar features is computed in all possible sizes and all possible locations which

provide a huge number of features.

Figure 2-1: Haar features relative to the enclosing detection window (Viola & Jones, 2001)

2.1.1.2 Integral Image

Viola et al. introduced a new concept called the integral image in order to facilitate the

computations of features since there are a lot of them. Any position in the integral image x, y

is the sum of all the pixels above and to the left of x, y inclusive (Viola & Jones, 2001). Figure

2-2 shows the illustration of the integral image. For example, the value of location 1 in the

9

integral image is the sum of pixel values of rectangle A. Similarly the value of location 2 in

the integral image is the sum of pixel values of rectangle A and B. The value at location 3 is

A+ C. As for the sum of pixel values in rectangle D, it can be obtained by subtracting the value

at location 2 and 3 from the value at location 4 then adding the value at location 1, as its going

to be subtracted twice while subtracting both 2 and 3, since the value at 1 is contained in both

2 and 3. The equation of obtaining the pixel values at rectangle D is 4 +1- (2+3). The integral

image reduces the calculation cost of pixels as it can calculate the sum of pixel values at any

given rectangle by 4 array accesses at most.

Figure 2-2: Integral image illustration(Viola & Jones, 2001)

2.1.1.3 Boosting

The authors chose Adaboost as a method to obtain their strong classifier. “Boosting is

an approach to machine learning based on the idea of creating a highly accurate prediction rule

by combining many relatively weak and inaccurate rules.” (Schölkopf, Luo, & Vovk, 2013).

Adaboost , which was proposed by Freund and Schapire (Freund & Schapire, 1995), has been

the first practical boosting algorithm and is still widely used in many applications (Schölkopf

et al., 2013). Adaboost is simple and adaptive (Dezhen & Kai, 2008) yet it operates in a brute

force manner, passing by all the set of features multiple times. Figure 2-3 explains the Adaboost

algorithm, where each round of boosting selects one feature from the set of all possible features.

10

Figure 2-3: Adaboost Algorithm(Viola & Jones, 2001)

The general idea of the algorithm works as follows:

For a number of iterations T:

 Pass through the set of all possible features and calculate the error of each one on the given

images.

 Choose the best feature (the one with the lowest error) as the first weak classifier.

 Update the sample images and their corresponding weights, by putting more weights on

the wrongly classified images.

11

 Go through the next iteration, until it finds the set of best features to be used in

classification.

As shown from Figure 2-3 the weights are updated as a function of the error produced by the

chosen classifier. In other words, the samples that has been misclassified by the chosen

classifier are given more weight. These weights are used to inform the training of the weak

classifiers i.e, the classifier that correctly classifies samples with higher weights are considered

to be of better performance than the other classifiers.

2.1.1.4 Cascade Classifier

One of the important contributions of (Viola & Jones, 2001) is the cascaded classifier. This

structure of the classifier allows for better accuracy while radically reducing the time consumed

in detection (Viola & Jones, 2001). The cascaded classifier is a stage classifier where the

thresholds vary. The first stages have a low threshold, thus detecting all the true positive while

eliminating the strong negatives, before the more complex classifiers are called to achieve less

false positives. Figure 2-4 provides a description of this classifier.

 Figure 2-4 Schematic description of a detection cascade(Viola & Jones, 2001)

From Figure 2-4 it is clear that a series of classifiers are applied to every sub-window.

The initial classifier is able to eliminate a huge number of negative examples with little

processing. The following stages of classifiers then eliminate additional negatives, yet they

apply more computations. After several stages of processing the number of sub-windows are

drastically reduced (Viola & Jones, 2001).

12

2.1.1.5 Results

The resultant classifiers, on which the authors of (Viola & Jones, 2001) trained and

based their experiments on is a cascaded one of 38 layers. The training set consisted of a set

of 24X24 pixel images, of which 4916 faces and 9544 non faces. Within these non faces there

are 350 million sub-windows and the total number of features is 6061. This detector was

tested on the MIT+CMU frontal faces test. This set has a total of 130 images with 507 labeled

frontal faces. The results are shown in the Receiver Operator Curve (ROC) in Figure 2-5.

.

Figure 2-5: Roc Curve for detector on MIT+CMU dataset (Viola & Jones, 2001)

2.2 Enhancements over Viola-Jones

Some of the researchers used the Viola-Jones algorithm as a base for their research then

proposed and implemented their concepts to provide even more powerful detectors. Li et al.

proposed new enhancements that include SVMs and stopping criteria to detect more objects

instead of just frontal-upright faces. Lienhart et al. proposed the increase of Haar features used.

This section will give more details about both approaches.

2.2.1 The use of SVMs and new stopping criteria

Li et al (Q. Li, Niaz, & Merialdo, 2012) have achieved 3 major contributions. They used

multiple feature images instead of just gray ones used by Viola-Jones, They devised a way to

avoid the non-converging in training the classifier. They also outputted a weighted value as a

confidence measure to whether the test image contains the desired objects or not.

13

The training data is preprocessed and a set of 6 image features are produced, the 6 types

are: Gray image, Local Binary Patterns (LBP), EDGE, L-channel, A-channel and B-channel

images. They tackled the problem of the non-converging training set in the cascaded classifier

since the stopping criteria is a preset false alarm rate which sometimes is never reached. In

order to fix this, they introduced a new stopping criterion, which is the maximum variance ratio

(R) between the score of the positive and the negative training images. The main idea is to

separate the positive and negative as much as possible and keep the inner variance of each class

small. The score is defined as “the stage sum of the last stage classifier of a survived image

patch. Stage sum is the cumulative sum of Haar like features convolved with the image patch

(Q. Li et al., 2012). If R keeps increasing the training continues, the training classifier will

converge since R will not be increasing all the time. As for the detection part, a key point based

SVM is incorporated to get a confidence measure (to weigh the output score). The authors

tested their algorithm on the TRECVID 2011 development dataset, they chose four objects

which are: Computers, Scene_Text, Telephone and Hand. In all of these categories their

algorithm performed much better than the Viola-Jones implementation in OpenCV. The results

can be seen in Figure 2-6.

Figure 2-6 Object detection average precision on selected objects (top 40 in 113 test image)(Q. Li et al., 2012)

2.2.2 Increasing Haar Features

The authors of (Lienhart & Maydt, 2002) approach in enhancing the Viola-Jones Rapid

Object Detector differs from the approach pursued by the authors of (Lienhart & Maydt, 2002).

They wanted to enhance Viola-Jones by increasing the Haar features to more than the 4 used

in the original work. They used 45 degrees rotation of feature that adds domain knowledge to

the learning framework. These features can be seen in Figure 2-7.

14

Figure 2-7 Extended set of Haar features black and white regions have negative and positive weights (Lienhart &

Maydt, 2002)

Increasing the type of features from 4 to 14 substantially increased the number of

generated features per image. Table 2-1 gives a summary of the number of features inside a

24x24 image window per feature prototype from Figure 2-7. The upright features can be

computed fast by the integral image (Lienhart & Maydt, 2002). As for the rotated ones the

authors created a rotated summed area table to enable them to calculate the value of the rotated

features fast. The results shows that with these extended set of features the classifier performs

better than the original one that had only 4 features, they also had comparable computation

complexity. Figure 2-8 shows the ROC curve of the 2 classifiers with 12 stages.

Table 2-1: Number of features inside a 24X24 image for each prototype (Lienhart & Maydt, 2002)

15

Figure 2-8: Basic versus extended features set. (Lienhart & Maydt, 2002)

2.3 Feature Selection.

A feature can be defined as measurable property of the data being observed

(Chandrashekar & Sahin, 2014). Feature Selection is the process of reducing the whole search

space into a sub-set of relevant features. This helps in removing noise and irrelevant features

reducing time while providing good prediction results (Chaaraoui & Flórez-Revuelta, 2013;

Chandrashekar & Sahin, 2014; Jeong, Shin, & Jeong, 2014; Lee & Lee, 2014; Liang, Tsai, &

Wu, 2014; Oreski & Oreski, 2014; Santana, Silva, Canuto, Pintro, & Vale, 2010; Vignolo,

Milone, & Scharcanski, 2013; Xia, Zhuang, & Yu, 2014; B Xue et al., 2016; Bing Xue, Fu, &

Zhang, 2014; Yusta, 2009). The need for feature selection methods arose due to the availability

of high dimensional data with hundreds or thousands of attributes. In other words Feature

Selection methods are ways to solve the curse of dimensionality (Powell, 2007).

Feature Selection techniques are divided into 3 main categories which are Wrappers,

Filters and Hybrid (Embedded) methods. (Chaaraoui & Flórez-Revuelta, 2013; Liang et al.,

2014; Oreski & Oreski, 2014; Santana et al., 2010; Vignolo et al., 2013; Yusta, 2009). Table

2-2 provides a summary for these three categories.

2.3.1 Filters

Filter techniques rely on the intrinsic properties of the data without involving a

classification technique (Oreski & Oreski, 2014). They use variable ordering techniques as

criteria for selection by ordering. Variables that are below a certain threshold and excluded

from the original variable set (Chandrashekar & Sahin, 2014). A basic criteria of the chosen

16

feature is to have useful information about the classes of the data. This property can be called

feature relevance, which is the ability of this feature to discriminate between classes. Feature

reference can be defined as “feature can be regarded as irrelevant if it is conditionally

independent of the class labels.” (Chandrashekar & Sahin, 2014). Some examples used for filter

techniques are: Correlation criteria, mutual information (Chandrashekar & Sahin, 2014).

The advantages of the filter methods are: That they are computationally efficient, avoids

overfitting and has proven to work well on certain datasets (Chandrashekar & Sahin, 2014).

They don’t rely on learning algorithms which are biased and change the data to fit the learning

algorithm. The disadvantages of some of these methods are that they don’t consider the feature

in relation with other features. In other words, features that are not informative on their own

but give valuable information when combined with other features might be disregarded.

(Chaaraoui & Flórez-Revuelta, 2013; Chandrashekar & Sahin, 2014; Oreski & Oreski, 2014;

Santana et al., 2010; B Xue et al., 2016).

2.3.2 Wrappers

Wrapper methods use classifier predictions as a fitness measure for the sub-set of

features (Chaaraoui & Flórez-Revuelta, 2013; Chandrashekar & Sahin, 2014; Jeong et al.,

2014; Lee & Lee, 2014; Liang et al., 2014; Oreski & Oreski, 2014; Santana et al., 2010;

Vignolo et al., 2013; Xia et al., 2014; B Xue et al., 2016; Bing Xue et al., 2014; Yusta, 2009).

Since evaluating multiple subsets is an N-P hard problem, Wrappers become computationally

expensive especially with large datasets. Wrappers often utilizes metaheuristics like GAs,

Particle Swarm Optimization (PSO) and Ant Colony optimization (ACO). Though Wrappers

are generally more accurate than Filters, their main drawback is computational complexity

since each sub-set of features is passed to a classifier for training and testing to in order to

calculate the accuracy (Chaaraoui & Flórez-Revuelta, 2013; Chandrashekar & Sahin, 2014;

Oreski & Oreski, 2014; Santana et al., 2010; B Xue et al., 2016). Another drawback of these

methods which use classifier prediction as the objective function is that these classifiers are

prone to overfitting. Overfitting happens when the classifier lacks the ability for generalization

and only acts well on the data used for training. In this case the classifier will be biased and

provide poor classification results (Chandrashekar & Sahin, 2014).

2.3.3 Embedded

Embedded methods are hybrid methods that try to combine the advantages of both

Wrappers and Filters. It aims to reduce the time taken by wrappers in re-classifying the sub-

17

sets by incorporating the subset selection while training. In (Chandrashekar & Sahin, 2014)

some of the embedded methods techniques are provided and discussed.

Table 2-2: Summary of feature selection techniques

 Filters Wrappers Embedded

Definition Relies on general properties

of data.

Uses machine learning

approaches as black boxes

to score features.

Combines both the filter and

wrapper approach.

Advantages Computationally more

efficient in comparison to

wrapper approach.

Provides more accurate

subsets than filters.

Tries to reduce the time taken by

wrappers by including filters in the

learning process

Disadvantages Provides worse subsets. Involves computational

overhead to score features.

2.4 Genetic Algorithms

This section provides background on Genetic Algorithms (GAs), their techniques and the

processes involved such as mutation, crossover and selection methods.

2.4.1 Overview

Genetic Algorithms are heuristic mechanisms that are successful in solving many

difficult problems. They can be considered the best solution for high complexity problems such

as the combinatorial optimization (Tabassum & Mathew, 2014). GAs are most likely the first

Evolutionary Computing (EC) technique to be widely applied to Feature Selection problems

(B Xue et al., 2016). Genetic Algorithms (GAs) were first proposed by John Holland (Holland,

1975). They are optimizing procedures that are devised from the biological mechanisms of

reproduction and evolutionary science (survival of the fittest) (Andrade & Errico, 2008; Harb

& Desuky, 2011; Sun, Bebis, & Miller, 2004). In natural, individuals compete for scarce

resources like food and shelter. The best individuals that are suited for this competition survive.

Adaptation to the surrounding environment is essential for the survival of a species. The traits

that uniquely characterizes the individual determines its chances for survival (Srinivas &

Patnaik, 1994). These traits are encoded in each individual as genes. The best genes survive

through generations by means of reproduction. In other words, fit genes enable individuals to

survive, reproduce, consequently passing on their fit genes to their offspring, which in turn will

pass through competition and those who survive will reproduce passing on their genes. This

18

will ensure that over the course of generations, the genes in the offspring are to be refined,

providing fitter generations that are more capable of adapting to the environment.

GAs resemble survival of the fitness mechanism as they start with an initial random

population that propose solutions to the problem at hand (Mitchell, 1998; Sun et al., 2004).

Each individual in the population is encoded (usually as a string of bits) in order to mimic a

chromosome. This denotes that the parameters of the problems are joined to form one possible

solution chromosome. In order to evaluate the fitness of this individual, it’s associated with a

fitness score that governs its ability to survive through generations and breed. This score is

provided by an objective that is set and is referred to as a fitness function. The main Idea of

GAs is to get those individuals which prove to be promising, pass them on to the reproduction

phase where their genes are combined and slightly modified to provide offspring. The fitness

score controls the probability of an individual to be chosen; as the selection process usually

favors fitter individuals i.e. individuals of a higher fitness score. This means that fitter

individuals have the chance to be selected more than once and poorly performing individuals

might not be selected at all. This is done several times and finally the fitness of the population

should converge to an optimal or a near optimal solution.

The formation of new offspring in the reproduction phase is attained by means of

crossover and mutation. Crossover is the process where genes of 2 individuals are combined to

form a new individual. Mutation occurs by changing one gene of the produced children from

the crossover phase. (Lillywhite et al., 2013). Crossover allows for fast exploration of the

search space, while mutation increases the probability of the exploration of all of the search

space. In other words, it decreases the probability of having an unexplored solution in the

search space.

In brief, the basic operations that guide the GAs search are: Encoding, evaluating,

selecting and recombining individuals. These operation are preformed iteratively (Sun et al.,

2004). They stop at a predefined stopping criteria or when the given maximum number of

iterations is reached. Figure 2-9 explains how GA works.

19

Figure 2-9: How GAs Work (Lee & Lee, 2014)

2.4.2 GA Details

2.4.2.1 Crossover Types

Crossover is the process where fit individuals are combined to form new individuals

that will be a part of the next generation. This process helps in the exploration of the search

space. Crossover has many forms; the most important ones are discussed in the following

subsections.

2.4.2.1.1 One-Point Crossover

One-point crossover is the simplest form of crossover. In this type, a point is chosen

randomly and the 2 parent chromosomes are cut at this point. Then the sections after this

cut, are exchanged to form the 2 children (Hasançebi & Erbatur, 2000; Magalhães-Mendes,

2013). Figure 2-10 visually illustrates the one-point crossover technique.

Figure 2-10: Single point Crossover (Hasançebi & Erbatur, 2000)

20

2.4.2.1.2 Two-Point Crossover

Two-point crossover is when the 2 parents are cut at 2 different points. It is done by

either swapping the inner portions (genes between the 2 points) or the outer portion, since both

options provide the same results (Hasançebi & Erbatur, 2000; Magalhães-Mendes, 2013).

Figure 2-11 illustrates the two point crossover.

Figure 2-11: Two-point crossover (Hasançebi & Erbatur, 2000)

2.4.2.1.3 Multi-point crossover

Multi-point crossover is an extension to the two point crossover where the two parents

are cut at 3 or more points and the portions between these points are exchanged. This type of

crossover helps the exploration of more parts of the search space (Hasançebi & Erbatur, 2000).

2.4.2.1.4 Uniform Crossover

In this type of crossover a bit mask of the same length of the individual (chromosome)

length is randomly created. Each bit of the mask determines the gene would be copied from

which parent into the child. 1 means the gene will be transferred from parent number one, 0

indicates that the gene will be copied from parent number two (Hasançebi & Erbatur, 2000).

Figure 2-12 illustrates the uniform crossover.

Figure 2-12: Uniform crossover(Hasançebi & Erbatur, 2000)

21

2.4.2.2 Selection Mechanisms

Selection mechanisms are crucial as they choose the individuals that will participate in

the next generation. If the best individual is always chosen, premature convergence will occur

(Andrade & Errico, 2008). Premature Convergence is when a highly fit gene (but not optimal)

dominates generations, causing the population fitness to converge to a local maxima. As a form

of avoiding this problems many selection techniques where devised.

2.4.2.2.1 Tournament Selection

Tournament selection is the most commonly used selection mechanism, due its

simplicity and straight forward implementation (Goldberg & Deb, 1991; Noraini & Geraghty,

2011). It’s achieved by randomly selecting a number of individuals from the population. These

individuals compete and the fitter one is chosen to participate in the next generation. The

number of competing individuals is called tournament size and is usually set to two (Noraini

& Geraghty, 2011). Tournament section gives each individual the chance to participate, thus

preserving diversity though this might lead to slower convergence. Tournament selection has

several advantages which include efficient time complexity, especially if implemented in

parallel, low susceptibility to takeover by dominant individuals and no requirement for fitness

scaling or sorting. (Baker, 1985; Goldberg & Deb, 1991; Noraini & Geraghty, 2011). Figure

2-13 shows an illustration of the tournament selection mechanism.

Figure 2-13 Tournament selection(Noraini & Geraghty, 2011)

22

2.4.2.2.2 Roulette Wheel Selection

 Proportional Roulette Wheel Selection

In proportional Roulette Wheel Selection, the probability of an individual being

chosen is directly proportional to its fitness value, i.e the fitter individual has a

higher probability of being selected. The probability of choosing a parent is

analogous to a roulette wheel and the size of its segments are proportional to

each parent’s fitness. Thus parents with higher fitness have larger segments on

the roulette wheel, consequently more chance of being chosen. The probability

of choosing an individual is calculated by equation (2.1) (Noraini & Geraghty,

2011). Where p is the probability of choosing individual, f is the fitness value

of individual. N is the total number of individuals the population.

𝑝𝑖 =
𝑓𝑖

∑ 𝑓𝑖
𝑛
𝑖=0

 (2.1)

This type of selection mechanisms gives chance to all of the individuals in the

population, preserving the diversity. Yet, it gives higher probability to fittest

individuals, which may cause these individuals to dominate populations fast

which eventually leads to premature convergence, and loss of genetic diversity.

For example if the population contains two fit induvial and the rest of the

population has poor fitness, these two fit individuals will dominate the

population quickly. On the other hand, if the whole population is of similar

fitness, the population will face difficulty in evolving to a better solution since

both probabilities of fit and unfit individuals are similar. (Noraini & Geraghty,

2011)

 Rank-Based Roulette Wheel Selection

At the beginning the individuals are sorted according to their fitness values, and

the probability of one being chosen is based on its rank in the sorted array. Rank

based selection is not influenced by “super-individuals” or the spread of fitness

values. Rank-based selection depends on a mapping function that maps the

indices of the individual in the sorted list according to their fitness values. Thus,

the performance of this technique depends heavily on the mapping function

23

chosen. (Noraini & Geraghty, 2011). Figure 2-14 shows the Roulette Wheel

selection mechanism.

Figure 2-14 Roulette wheel selection (Noraini & Geraghty, 2011)

2.4.2.2.3 Deterministic Sampling

In deterministic sampling the average fitness of the population is calculated. After that,

the fitness value of each individual is divided by the average fitness of the population and the

integer part is stored. If the integer is greater than 1, the individual is chosen, else the individual

will not be selected to participate in the next generation. The rest of the population size is then

filled by choosing individuals with greater fractions. (Andrade & Errico, 2008)

2.4.2.2.4 Stochastic Remainder Sampling

Stochastic random sampling is identical to deterministic random sampling where the individual

is chosen based on the integer part resulting from the operation of dividing the individual

population by the average population. The rest of the population size is filled by the means of

a roulette wheel selection.

2.4.2.3 Mutation

Mutation is another form of exploring the search space, it reduces the probability of

having an unexplored solution. Mutation is mainly concerned with changing a one gene of the

child produced by the crossover process, according to a preset probability.

24

2.4.3 Strength of GAs

GAs are powerful optimization algorithms that have proven their success in many fields.

Tabassum et al. Mentioned that “It was proved that genetic algorithms are the most powerful

unbiased optimization techniques for sampling a large solution space” (Tabassum & Mathew,

2014). In their work (Ferri & Pudil, 1994) highlighted the point of strength of the GAs which

is the ability to perform the search in a near optimal region due to the inherit randomizations

used in the search. In this sub-section general works on Genetic Algorithms is reviewed.

2.4.3.1 Circle Detection Using GAs

Ayala-ramirez et al. proposed a method to detect circles in an image using GAs. They

preprocessed the image by a Sobel filter and got all the edge points in an image, then they

took 3 points at a time to test if they formed a circle (Ayala-ramirez, Garcia-capulin, Perez-

garcia, & Sanchez-yanez, 2006). They generated a circle with these 3 points and found virtual

points that lie on this circle. After that, they examined how many of these virtual points

actually exist in the edge points they got after applying the Sobel filter, considering this as the

fitness function of the GA. This method has been tested on both synthesized images where the

authors put random circles in an image, and on natural images taken by a digital camera; in

both cases this method achieved good accuracy with a worst case scenario of 92%, in a short

amount of time as shown in Table 2-3 and Table 2-4.

Table 2-3 Discrimination results on synthetic images (Ayala-ramirez et al., 2006)

Table 2-4 Discrimination results on natural images (Ayala-ramirez et al., 2006)

25

2.4.3.2 Feature Construction Using GAs

Lillywhite et al. devised a system that uses genetic algorithms to construct features, as little

research is concerned with the point of feature construction (Lillywhite et al., 2013). They

used Adaboost to build a strong classifier from a series of weak classifiers. Their features;

which they called ECO features, are generated using a Genetic Algorithm, that creates an

ordering of basic transformations like Sobel operator, Canny edge, Pixel statistics,

Histogram, Gaussian blur...etc. the initial population is some vectors that are produced after

the application of a series of these transformations on a sub-image I (x1,y1,x2,y2).

After having the initial population, a genetic algorithm is applied with mutation and

crossover processes. The genes are the elements of an ECO feature which includes the

transformation type and the transformation parameters. They associated a weak classifier

with each ECO feature in order as a means for calculating a fitness score. This fitness score

is associated with how well the feature identifies an object in a small training set. The weak

classifier is a single perceptron that maps the feature vector to a binary classification through

a weight and bias. The weights are updated through the error rate, which is subtracting the

perceptron output from the original image classification. The fitness score equation depends

on the number of true positives, false negatives, true negative and false positives.

The following step that takes place after the Genetic algorithm has found good ECO

features is to build a strong classifier based on the weak classifiers (the perceptrons in this

case) using Adaboost algorithm.

This method has been tested against previously published papers using same dataset

(Caltec dataset) for comparison and proved to be significantly more accurate overall. These

results are shown in Table 2-5.

Table 2-5: comparison on Caltech dataset to other methods

26

2.4.3.3 GAs versus Simulated Annealing in Mean Cut sizes

There exists other optimization methods that serve well, yet for some experiments GAs

have proven to perform better. This might be due to the advantages of GAs, which are

probabilistic and not deterministic, they work well with stochastic systems and have the

ability to be better at avoiding to be stuck at a local maxima due to their parallelizable

nature.

Manikas et al. provided a comparison in their paper between GAs and simulated

annealing in the problem of optimizing the placement of the circuit’s physical components

on a chip (Manikas & Cain, 1996). The problem of circuit partitioning can be represented

as a graph with a set of vertices V and a set of edges E the partitioning process splits the

circuit into groups of equal sizes and tries to find the group with minimal interconnections

called a cutsize. They used 3 circuits and applied both the GA and simulated annealing, to

find a proper solution.

From their experiment they concluded that GA preforms as good as, or even better than

simulated annealing. Figure 2-15 shows the result of the carried out experiment, it shows

that in 2 circuits GA was able to find a smaller (better) cutsize than the commonly used

simulated annealing.

Figure 2-15: Comparison of mean cutsizes (Manikas & Cain, 1996)

27

2.5 Feature selection with GAs

“Genetic Algorithms (GAs), have been developed for solving feature selection problems due

to their efficiency for searching feature sub-set spaces in feature selection problems”(Jeong et

al., 2014). GAs are widely used in Feature Selection (Tsai et al., 2013). A lot of research has

been done on the combination of GA with feature selection techniques and has been proven

successful. In this section we discuss some of these works.

2.5.1 Work that utilizes GA with feature selection.

(Santana et al., 2010), (Oreski & Oreski, 2014) (Liang et al., 2014) experimented with filters,

while (Sun et al., 2004) (Dezhen & Kai, 2008) (Chouaib et al., 2008) (R. Li, Lu, Zhang, &

Zhao, 2010) (Harb & Desuky, 2011) (Jeong et al., 2014) (Oreski & Oreski, 2014) (Lee &

Lee, 2014) (Liang et al., 2014) (Vignolo et al., 2013) used wrapper methods with GAs.

(Vignolo et al., 2013) and (R. Li et al., 2010) used K-Nearest Neighbor as the black box

classifier in the wrapper method. While (Chouaib et al., 2008), (Dezhen & Kai, 2008) , (R.

Li et al., 2010), and (Harb & Desuky, 2011) used Adaboost as their classifier. SVMs have

been used as classifiers in (Sun et al., 2004), (Lee & Lee, 2014), and (Liang et al., 2014).

(Oreski & Oreski, 2014) and (Jeong et al., 2014) used Neural Networks as their classifier.

The following discusses some research that use both GA and feature selection to solve

different types of problems.

2.5.1.1.1 Comparing GA with other metaheuristic method in Feature selection

Sun et al. (Sun et al., 2004) used the powerful methods of GAs to select the best

eigenvectors. They compared the use of GA with SBFS in Feature Selection. The SBFS is

based on the 2 heuristic methods, which are the sequential forward selection (SFS) and

sequential backward selection (SBS) methods. The GA results have been proven to improve

detection results.

(Yusta, 2009) compared metaheuristic techniques including GA and SFBS along with other

popular algorithms such as GRASP and Tabu search.

(Santana et al., 2010) Compared the use of GA with ACO in feature selection for building an

ensemble of classifiers. They concluded that when using small ensembles (small number of

individual classifiers), the best option is ACO, while for larger ones GA performed better.

28

2.5.1.1.2 Genetic Algorithm in feature selection with Adaboost

Chouaib et al (Chouaib et al., 2008) aimed to find the set of the most representative features

using GAs, in order to decrease the detection time in hand-written digit recognition. Their

results showed that for the majority of descriptors their feature set was significantly reduced

up to 35% of the original set in multi-class problems.

Dezhen et al. (Dezhen & Kai, 2008) provided a post optimization technique to avoid the

redundancy of classifiers. By doing so, they managed to increase the speed of classification by

110% due to reducing the number of features to 55% of the original set.

(R. Li et al., 2010) proposed the use of dynamic Adaboost with feature selection based on

parallel GA, in image annotation, yet the Adaboost ensemble had better accuracy than the

algorithm that included feature selection with GA.

(Harb & Desuky, 2011) used Adaboost ensemble with a post optimization process for feature

selection using GA and applied it to intrusion detection. They concluded that their method

effectively improved the results of the boosted classifier providing, better accuracy with fewer

weak classifiers

2.5.1.2 Use of GA in feature selection in miscellaneous applications

(Chaaraoui & Flórez-Revuelta, 2013) proposed a human action recognition

optimization using evolutionary feature sub-set selection and claimed to have achieved

promising results, as they achieved perfect detection on their test dataset with a reduced feature

sent by approximately 47% on average.

(Oreski & Oreski, 2014) used Genetic Algorithm in feature in credit risk assessment, and

proved that their technique provided promising results and that their classifier is a promising

addition to existing data mining techniques.

 (Lee & Lee, 2014) experimented with the same techniques in the problem of predicting

heavy rain fall from big weather data, their experiment proved that their proposed approach

had a similar accuracy when compared to original algorithm. Yet computation time was

reduced 8 times due to the dimensionality reduction of the data.

(Liang et al., 2014) used several wrapper methods and included Particle Swarm Optimization

PSO and GA and Filter methods like linear discriminant analysis (LDA), t-test, logistic

regression (LR). They concluded that although it’s hard to choose the best feature selection

method for financial distress, the better wrapper method is the GA.

29

(Vignolo et al., 2013) investigated the use of feature selection with GA in face recognition

and proved that their proposed approach enhanced the detection performance while reducing

the representation dimensionality.

2.6 Summary

This chapter provided background on the basic areas used in this thesis. Viola-Jones

Rapid Object detector, and some enhancements on it have been discussed. Feature selection,

its categories and importance is provided. An overview on Genetic Algorithm is given. Finally

research using both GAs in feature section is examined.

Since the last section has proved the effectiveness of combing GA in Feature Selection with

various problems and since the previous work was concerned with enhancing the accuracy or

speed of detection regardless of the overhead posed on the training time. This work aims to

examine the effects on increasing the speed of training using GAs in feature selection and how

this might affect the accuracy in the Viola Jones Rapid Object Detector, with its cascaded

classifier structure.

30

CHAPTER (3): PROPOSED APPROACH

The outcome of the proposed methodology is building a cascade classifier that is

efficient and does not require too much time to train, without a significant effect on the

detection accuracy. The sections of this chapter describe the methodology of building such

classifiers, how to implement them and the tools used for achieving the required goal, since the

basis of this methodology is to incorporate GAs in the training process of the Classifiers, the

details of the GA used are to be discussed. Also, the training and testing details are discussed.

3.1 OpenCV

In order to integrate the use of GA, Open Source Computer Vision Library

(OpenCV)(Itseez, 2015) was used. OpenCV is an open-source BSD-licensed library that

includes several hundreds of computer vision algorithms (“The OpenCV Reference Manual,”

2014) . OpenCV contains the implementation of the Viola-Jones cascade classifier in the form

of 2 applications: Opencv_haartraining, and Opencv_traincascade. Table 3-1 provides a brief

summary of both applications.

3.1.1.1 Opencv_haartraining

Opencv_haartraining supports only Haar features. The drawback of this

application is that it has become obsolete and has been removed from newer versions

of OpenCV.

3.1.1.2 Opencv_traincascade

Opencv_traincascade is the newer version of training a cascade classifier in

OpenCV. This application supports Local Binary Patterns (LBP), Histogram of

Oriented Gradients (HOG) along with Haar features. Opencv_traincascade also

supports the use of Threading Building Blocks (TBB) for multi-threading in a multi-

core environment.

Both of these applications store the trained classifier with different file formats.

Opencv_traincascade is able to store the resultant classifier in the old format, yet none of the

applications can load the other’s format to continue the training if the training was interrupted

at any point.

31

Table 3-1 Comparison of OpenCV Application used to train a cascade classifier.

 Opencv_haartraining Opencv_traincascade

Difference Older version of cascade classifier

implementation.

Newer version of cascade classifier implementation.

Advantages  Less code, easier to manipulate, and add

functions to.

 Supports LBP in addition to Haar.

 Supported in newer versions of OpenCV.

 Supports multi-threading

 Saves the saved classifier in both old and new

formats

Disadvantages  Obsolete (not supported in newer

OpenCV versions.

 Only saves and loads the old version of

template for saving the classifier.

 Only loads the old version of template for saving

the classifier.

 Lots of modules in the code, not well documented,

thus harder to manipulate and add functions to.

As shown, Opencv_traincascade surpasses Opencv_haartraining in the advantages, thus

opencv_traincacade was chosen to be modified by adding necessary functions, in order to

implement the proposed idea.

3.2 GAdaboost Overview

The proposed method (Named: GAdaBoost) applies GA to select a set of features, to

have Adaboost choose from, instead of going through the set of all possible features. The

original Adaboost algorithm was proposed by Freund and Schapire (1995) the generalized

version works as follows: For the training of each stage in the stage classifier, the algorithm

passes through the set of all possible features and calculates the error of each feature on each

given image. After that, it chooses the best feature (the one with the lowest error, i.e best

classifies the image correctly) as the first weak classifier. It then updates the sample images

and their corresponding weights, by putting more weights on the wrongly classified images.

The procedure is repeated until the set of chosen features reaches a preset false alarm and hit

rate set for classification.

32

Incorporating the use of GA will increase the training speed by avoiding the error

calculation of the set of all possible features and only providing the Adaboost algorithm with a

representative set of features, that have been chosen based on their classification power. This

set of representative candidate features is to be prepared by the GA before the training of each

stage in the final classifier. For example if the final classifier is to have 10 stages the added GA

technique is to be repeated 10 times. The stage training utilizes Adaboost technique to choose

multiple weak classifiers from the mentioned representative set, in order to reach the desired

false alarm and hit rate preset for the stage. Figure 3-1 shows a block diagram that explains the

proposed GAdaBoost technique.

Figure 3-1 GAdaboost algorithm flowchart

33

On the first iteration the GAdaboost chooses a preset number of features randomly to

create the first generation of the given population size. Those randomly chosen features are

marked so that they are not to be used again when more random features are to be generated.

This is done to explore more of the set of all possible features. In order to assess the predictive

power of these features, they are passed to a learning algorithm. The way this has been

implemented is by creating a temporary (dummy) stage where the features are trained in the

same way the original stage training works, i.e the dummy stage is an Adaboost training

algorithm. The number of weak classifiers chosen by the Adaboost algorithm in the dummy

stage is a variable that is preset. The Adaboost algorithm associates the features with scores

that are a representation of their predictive power (how well they are able to correctly classify

images). After that the best features are then selected and have mutation and crossover

processes preformed on them to get the next generation of an even better performing set of

features. The new generation is then passed by a dummy stage for scoring. The process is

repeated until the average fitness of the population saturates or a predefined number of

iterations are reached.

As a form of exploring more of the set of all possible features, for each iteration with

an even number (2nd, 4th, etc. generations) that is greater than zero, the best set of parents and

their children produced are chosen. Then a spatial comparison is formed to remove the

redundant features and random features are inserted instead to complete the population size.

The spatial comparison is done using the pasacal criterion where two features are considered

of spatial similarity if the ratio of the intersection of the two features over the union of the two

is greater than 0.4. This method is described in more detail in section 4.2.3.2. The use of only

even iterations entails that the spatial comparison is done on half the number of iterations (eg.

for 50 iterations, the spatial comparison is done 25 times). The final set of features obtained by

the GA is passed through a real stage where the weak classifiers selected by this stage are to

be used in the resultant final classifier. The afore-mentioned technique ensures that the

Adaboost algorithm will only evaluate the population size chosen instead of going through the

whole set of features when selecting the weak classifiers of the resultant final stage classifier.

The following is the pseudo code of the GAdaboost algorithm.

34

Algorithm GAdaboost

For each stage:

populationArray = selectRandomFetures(popSize)

fitnessValues = Adaboost(populationArray,noWeakClassifiers)

do

 if (evenIteration and iteration !=0)

 newGeneration= GetFittestIndivisuals(previous2Generations)

 newGeneration = specialCompare(newGeneration)

 if (newGneration.size<popSize)

 fillPopluation(newGeneration, selectRandFeatures())

 end if

 else if

tournamantPlayers = selectBestParents(populationArray, fitnessValues)

newGeneration = crossover(tournamantPlayers)

newGenration = Mutate(newGeneration)

 end if

fitnessValues = Adaboost(newGenration,noWeakClassifiers)

While (! converged and !presetItertionNo)

reducedfeatureSpace= newGeneration;

TrainStage(reducedfeatureSpace);

end For

35

3.3 GA Details

3.3.1 Initial population

In the first GA generation a random set of features out of the whole search space is

chosen, each feature is then mapped to a chromosome and added to the population. The

individual chromosome in this case is just the representation of one feature. It represents here

one feature which is one weak classifier, which can be considered the complete solution for

each iteration. In other words, the complete solution in this case is just one weak classifier

(feature) for each iteration. Figure 3-2 illustrates how the population is represented in the

proposed method.

Figure 3-2 Population illustration

3.3.2 Chromosome Representation

Each chromosome represents one Haar feature. The chromosome is of an integer

representation. The values of the chromosome are x, y, x1, y1, type, where x, y are the integer

values of the upper left co-ordinates of the feature rectangle and x1, y1 are the integer values

of the lower right corner of the feature rectangle. The type is an integer value from 0-4 where

each number represents one of the Haar feature types used for upright frontal faces detection.

0, 1, 2, 3, 4 represent the Haar types of haar_x2, haar_y2, haar_x3, haar_y3 and haar_x2y2

respectively. Figure 3-2 explains the mapping of a feature of type haar_x2 to a chromosome in

a given image. As shown, the chromosome carries decoded information about the type of the

feature and its orientation in a given image, the way the chromosome is represented facilitates

the mutation and the crossover processes which provide new features.

36

Figure 3-3 Chromosome to feature mapping

3.3.3 Fitness Function

The fitness function is a measure of how well this features splits between the negative

and the positive images or in other words predictive power of this feature in classifying the

images correctly. The OpenCV implementation uses decision stumps as weak classifiers, these

decision stumps are Classification and Regression trees (CART). In CART the regression tree’s

best split quality is calculated by the minimization of Equation 3.1.

∑ (TRi − PRi)
2𝑛

𝑖=0 (3.1)

Where TR is the ground truth of the image, PR is the predicted response by the decision

stump and n is the number of sample images. Yet, for simplicity the OpenCV traincascade

developer mentioned that in implementation the minimization criteria is reduced to equivalent

simpler maximization ones (Dimashova, 2012). In conclusion, the fitness of the feature used is

the split quality measure provided by OpenCV’s CVDTree class. Thus, in the implementation

the best feature is the one the largest quality.

37

3.3.4 Selection Mechanism

The selection mechanism used in GAdaboost is the Roulette Wheel selection method.

After each individual in the population is associated with a fitness function, the roulette wheel

selects pairs from the population. Each pair chosen will undergo a crossover mechanism to

produce child chromosome to participate in the next generation. This selection mechanism

ensures that the individuals with higher fitness will have a higher probability of contributing to

the next generation, since the probability of an individual of being chosen is directly

proportional to its fitness. In other words, the larger the fitness value of the chromosome the

larger its segment on the roulette wheel is, the higher the probability of its selection becomes.

3.3.5 Crossover

A simple one-point crossover has been used, in order to combine the genes of the 2

parents that are chosen according to their fitness by the selection mechanism to participate in

the next generation. The one-point crossover allows the exploration of the search space by

choosing one point then cutting the chromosomes at this point and exchanging the parts of the

chromosome after the cut. This type of crossover has been chosen as it best fits the chromosome

representation applied in GAdaboost. Since the chromosome is short and consists of the upper

left corner, lower left corner and the type of the rectangular feature, the cut point has been

chosen to be at the lower right corner of the two candidate features. Figure 3-4 illustrates the

crossover done by the GAdaboost technique.

 In order to ensure the validity of the produced children, some checks are preformed.

Each child chromosome coordinates (coordinates of the feature it represents) are checked. If

the produced chromosome is unvaild, for example, its lower right horizontal coordinate (x1) is

smaller then its upper left horizontal coordinate (x), the choromose is fixed by exchanging the

2 values. The same process is done for the vertical cooridinates of the produced child. Similariy,

if the horizontal coordinates, or the vertical cordinates of the upper left corner and lower right

corner of the feature the chromosome represnts are equal they are fixed. All the alterations to

build a valid choromosme are done in accordance to the width and height of the images.

38

Figure 3-4 GAdaboost crossover illustration

3.3.6 Mutation

The type of the feature is highly dependent on its width and height In order to reduce

the time taken by validation of the correctness of the feature, the mutation is designed to assign

the type to the feature according to how suitable this type is, given the co-ordinates of this

feature. So for each produced child chromosome when check if the width is divisible by two

then its assigned a haar_x2 type, if not we check if it is divisible by three and if it is then it is

assigned a type of haar_x3, and so on.

39

CHAPTER (4) EXPERIMENTS

In this chapter the experiments done on the proposed method are discussed. In order to test a

classifier 2 main processes are involved. These processes are: Training and testing. The first 2

sections describe these procedures and provides information that is beneficial for the

experiments. Then we start our experiments by building a baseline, which is the normal rapid

object detector proposed by Viola-Jones, without any additions of feature selection methods or

GA. The second experiment examines the fitness values of the best individuals and the average

fitness of the population through the generations of the Genetic Algorithm. The effect of

varying the population size on the training time is observed in the third experiment. The fourth

experiment builds a classifier with 20 iterations for the GA per stage and tests the accuracy of

both the Caltech Web Faces and the FDDB datasets. The final experiment compares the

baseline performances versus the performances of the 2 variations of GAdaboost with respect

to time and accuracy. All the training occurred on the same computer with an Intel Core i7-

4510U @ 2.00GHz processor and 8 GB RAM.

4.1 Training

Principally GAadaboost is concerned with training the cascade classifier faster with

minimal loss of accuracy in the detection process of the resultant classifier. Training is the

process where the application is given positive images, which are images that contain the

desired object. The positive images are annotated. i.e the places where the desired object lies

in these images is given. The training must also be given a set of negative images, which are

images that do not contain the desired object. The training must be given a stopping criteria, in

order to stop training when these results are reached on the validation set.

4.1.1 Positive images

The positive images used to train the detectors are acquired from the trainingfaces_24-

24 .vec file provided with OpenCV. This file encompasses information about 1000 images

containing upright frontal faces. A sample of these positive training images is shown in Figure

4-1.

40

Figure 4-1 Positive training images

4.1.2 Negative images

The negative images were picked randomly from the dataset of 101 objects developed

at Caltech (Fei-Fei, Fergus, & Perona, 2004). Figure 4-2 provides a sample of the negative

images used.

Figure 4-2 Negative images samples

4.1.3 Training Parameters.

To train a cascade classifier using Opencv_traincascade, some parameters values have

to be set, such as the number of positive images and number of negative images per stage, the

number of stages the final classifier will have, the type of features used and the hit and false

41

alarm rates per stage. Figure 4-3 provides a screenshot of the required parameters by the

opencv_traincascade application.

Figure 4-3 Opencv_traincascade parameters

42

4.1.4 Resultant trained classifier

After the training finishes the resultant classifier is stored as an xml file. The xml file

represents the stages, the nodes (features) to be applied on the testing images per stage, and the

threshold per each stage. Figure 4-4 shows snapshots of the saved classifier.

Figure 4-4 Resultant cascade classifier

43

As shown from Figure 4-4 the classifier is saved as an xml file containing information

about the parameters on which this classifier has been trained on, like the feature type and the

width and height of the training images, etc. It also contains the stages, their internal nodes and

the feature rectangles at the end of the xml file.

A stage is represented as follows (Figure 4-5)

Figure 4-5 Example of a stored stage of resultant classifier

The values of the internal node are, node.left node.right feature index (features are written as

rectangles at the end of the xml file as shown from Figure 4-4) and the node threshold.

4.2 Testing

In order to test the performance of the trained classifier, three processes take place:

Collecting test images, using OpenCV’s detection function, then matching the detected

rectangles to the ground truth of the test images.

4.2.1 Datasets

Face detection datasets were chosen since Haar features were used originally to detect

upright frontal faces. The Face Detection Dataset and Caltech Web Faces are the datasets used

For testing the built classifiers.

4.2.1.1 The Face Detection Dataset

The Face Detection Dataset (FDDB)(Jain & Learned-Miller, 2010) is a benchmark

dataset designed for studying the unconstrained face detection problem. This dataset has been

used in many studies and is considered one of the difficult datasets, due to occlusions, out of

focus faces and difficult poses (Jain & Learned-Miller, 2010).This dataset contains annotations

for 5171 faces in a set of 2845 images. The faces are annotated in the form of ellipses, and their

major and minor axes as shown in Figure 4-6.

44

Figure 4-6 Example of annotated FDDB dataset(Jain & Learned-Miller, 2010).

4.2.1.2 Caltech

Caltech Web Faces is a dataset of human faces collected from the web (Angelova, Abu-

Mostafa, & Perona, 2005) It is a challenging dataset since it contains difficult examples such

as; extreme face orientations, occlusion like hats and glasses and variable light conditions

(Angelova et al., 2005). The Caltech Web Faces data set consists of 10,524 annotated faces.

This dataset provides the images along with text files containing the co-ordinates of the mouth,

eyes and nose for each face in the image. In order to overcome the extreme face orientation

problem, the images were processed and faces where the difference between the y-coordinates

of the left and the right eyes are more than 20 percent of the face width, are disregarded. This

removed approximately 1,000 images of the Caltech dataset.

4.2.2 Detection with OpenCV.

Using the built classifier to detect faces can be achieved by using openCv’s detectMultiScale

function. It works by loading the xml file of the built stage classifier, then it provides the

detected rectangles of the faces on the test images.

 In order to calculate a score for each detected rectangle, the information about the stage at

which the outputted rectangle has been rejected is required, thus a variation of the

detectMultiScale function of OpenCV. The header of the former function is as follows:

detectMultiScale(Mat image, MatOfRect objects, MatOfInt rejectLevels, MatOfDouble

levelWeights, double scaleFactor, int minNeighbors, int flags, Size minSize, Size maxSize,

boolean outputRejectLevels)

45

However, this overloaded method of the detectMultiScale function has a bug in opencv 3.1

and has been reported to work in earlier opencv versions especially OpenCV 2.4. Hence, to

use this function, OpenCV 2.4.9 was used for detection.

4.2.3 Evaluation Tools

After the trained classifier is used to detect faces, the acquired results have to be

validated against the image annotation in order to acquire the accuracy of detection. The

evaluation has been done with different tools for each of the 2 datasets chosen for testing.

4.2.3.1 FDDB Evaluation Tool

The FDDB developers provide their tool for evaluation(Jain & Learned-Miller, 2010).

The software can be downloaded from their website along with some gnuplot scripts to draw

the Receiver Operator Curves (ROC) of previous published papers using their dataset as a

benchmark. Their tool is fairly simple to use, the detection file has to be fed to the tool in the

following format:

<image name i>

<number of faces in this image =im>

<face i1>

<face i2>

...

<face im>

Where each face is represented as follows:
 Rectangular regions:

 <left_x top_y width height detection_score>

OR,

 Elliptical regions

 <major_axis_radius minor_axis_radius angle center_x center_y

detection_score>.

Also the image ordering in the detection file is expected to be the same as the annotated file.

In this work, the Rectangular representation was used in the detected file. The detection score

is computed using the following Equation 4.1 as mentioned by the FDDB authors:

𝐾 ∗ 𝑟𝑒𝑗𝑒𝑐𝑡𝑖𝑜𝑛𝑆𝑡𝑎𝑔𝑒 + 𝑆𝑡𝑎𝑔𝑒𝑆𝑢𝑚𝑜𝑓𝑅𝑒𝑗𝑒𝑐𝑡𝑖𝑜𝑛𝑆𝑡𝑎𝑔𝑒 (4.1)

46

Where K is a large number in order to ensure that the window rejected by stage i will have a

much higher score than the one rejected by stage i-1.Both the rejectionStage and the

stageSumofRejectedStage can be computed by using the rejectLevels and the levelWeights

obtained from the variation of the detectMultiScale function of OpenCV.

4.2.3.2 Caltech Webfaces Evaluation Tool

Caltech Webfaces dataset has no evaluation tool thus we built a tool to match the

detected faces with the ground truth of the annotated file. This has been achieved through the

following steps:

1. Building a tool to convert the given annotation which are the co-ordinates of the

mouth, eyes and nose for each face into rectangular regions by assuming that

the face width equals double the distance between the 2 eyes. We also assume

that the width of the face equals the height of the face.

2. Building another tool that reads both the ground truth rectangles provided by

the previous tool and the detected faces from our cascade classifier and

matching them to acquire the classifier’s accuracy.

 For matching, we use the pascal criteria shown in Equation 4.2 (Everingham, Gool, Williams,

& Winn, 2010)

𝑎𝑟𝑒𝑎(𝐵𝑔𝑡 ∩ 𝐵𝑑𝑒𝑡)

𝑎𝑟𝑒𝑎(𝐵𝑔𝑡 ∪ 𝐵det)
> 0.4 (4.2)

Where 𝐵𝑔𝑡 is the ground truth bounding box and 𝐵𝑑𝑒𝑡 is the detected bounding box. Thus the

ratio of the area of intersection between the two boxes to the area of their union has to exceed

0.4 in order for the detected box to be counted as a face.

We followed the same template for the detection file and the annotated file used in the FDDB

evaluation tool. Also the detection score has been computed the same way it has been computed

for the FDDB.

47

4.3 Individual and Population fitness

4.3.1 Objective

In this experiment we observe the progression of the best individual fitness, and the

average fitness of the population per generation.

4.3.2 Method

In this Experiment a 17 stage cascade classifier has been trained with 500 positive images, and

500 negative images, and a hit rate of 0.995, and a false alarm rate of 0.5 per stage. The

GAdaBoost discussed in the proposed method (section 3) has been used to train this cascade

classifier. A population size of a 1000 and 50 iterations are the parameters set for the

GAdaBoost. Each dummy stage has been trained for only one weak classifier, with no carrying

on of the image weights between dummy stages. In addition the check on the special proximity

and its removal wasn’t utilized.

4.3.3 Results

Figure 4-7 shows the progress of the best individual, and the average fitness of the

population. They are shown over the course of 50 iterations of the GA performed before the

17th stage.

Figure 4-7 Best individual fitness and average population fitness over 50 iterations

4.3.4 Discussion

The best individual fitness either increases or stays constant, this can be attributed to

elitism, since in our algorithm the best few features survive and are passed on to the next

generation. i.e. not all the individuals of the parent population are replaced by the produced

children.

48

As for the average population fitness, it follows the expected behavior observed in

genetic algorithm. The fitness begins to increase significantly then starts to saturate as a

maxima is reached.

4.4 Population Size versus Training Time

4.4.1 Objective

In this experiment we emphasize the effect of varying the population size of the GA on

the time taken by GAdaboost in training the cascade classifier.

4.4.2 Method

In this experiment a 17 stage cascade classifier is trained 3 times, each with a different

population sizes while keeping the other training parameters constant. The constant parameters

are: 500 positive images and 500 negative images, a hit rate of 0.995 and a false alarm rate of

0.5 per stage. Each dummy stage is trained for 3 weak classifiers and the sample image weights

are carried on between the dummy stages, 20 iterations are set for GAdaboost. Each classifier

has been trained multiple times and the average time taken by each have been calculated.

4.4.3 Results

As can be observed from Figure 4-8 as the population size increase the time required to

train the cascade classifier increases.

Figure 4-8 Population size vs training time.

49

4.4.4 Discussion

The expected increase of the training time when increasing the population size can be

attributed to two factors: The first one is that the less the population size, the less mutations

and crossover processes take place. Consequently, less checking on feature validity will be

made, which will eventually save time. The second factor is that the GA provides the Adaboost

with a smaller feature set to go through in a brute force manner, which is less time consuming.

4.5 Baseline

4.5.1 Objective

The objective of this experiment is to have a baseline to compare our method with. Our

aim is to examine how a cascade classifier without any modification performs on the chosen

datasets of faces. The observation of the performances focuses on the accuracy of the detected

results, and the time taken to train this classifier.

4.5.2 Method

Opencv_traincascade application has been used to train a cascades classifier, without

any modification in the code. The classifier is trained to have 17 stages. The parameters for

training are: 500 positive images and 500 negative images per stage. The selected features are

of type Haar basic features. A hit rate of 0.995 and a false alarm rate of 0.5 have been chosen

per stage. The rest of the parameters are left with the default values.

The obtained classifier has been used to detect faces in 290 images found in the first

fold of the FDDB images, and 500 images from the Caltech Webfaces dataset. Then the

detected faces are passed to the evaluation applications, to assess their correctness of detecting

a face, and observe the accuracy of the trained classifier.

4.5.3 Results

The classifier has finished training in 67 minutes. The detection power has been

evaluated and the results are used to draw a Receiver operator curve (ROC) to provide a

visualization of how well the baseline classifier performs on the two chosen datasets. Figure

4-9 shows examples of detection on images. Both Figure 4-10 and Figure 4-11 show the

performance of the baseline classifier in detecting faces in both FDDB and Caltech Webfaces

respectively.

50

Figure 4-9 Examples of detection of baseline on images

Figure 4-10: Baseline performance on FDDB dataset

51

Figure 4-11: Baseline performance on the Caltech dataset

4.5.4 Discussion

As shown in from both figures, at 500 false positives, the baseline true positive rate is

64% and at 1000 false positives the baseline achieved 67% true positive rate on the FDDB

dataset.

While on the Caltech Webfaces dataset the baseline at 500 false positives, the baseline true

positive rate is 46 % and at 1000 false positives the baseline achieved 51%. These low

percentages can be attributed to the fact that the basic types of Haar features perform well in

detecting upright frontal faces, while both datasets are hard benchmarks since they contain

images with severe face rotations, occlusion and light variations. One possible enhancement

would have been to increase the number of positive and negative images used for training, or

set a larger value for the number of stages (greater than 17) while training the cascaded

classifier.

4.6 GAdaboost 20 iterations

4.6.1 Objective

The objective of this experiment is to test the results of the GAdaboost. In summary,

GAdboost is implemented by injecting a feature selection mechanism using GA into the

original training mechanism of the cascade classifier. By conducting this experiment we

observe the effects of adding GA with 20 iterations to the original Viola-Jones Rapid Object

52

Detector on the training time and accuracy of detection on both FDDB and the Caltech

Webfaces dataset.

4.6.2 Method

A 17 stage classifier using the GAdaboost method has been trained with the following

parameters: 500 positive images and 500 negative images per stage, the selected features are

of type Haar basic features, a hit rate of 0.995 and a false alarm rate of 0.5 were chosen per

stage. The rest of the parameters are left with the default values. Each stage is trained for 3

weak classifiers, and the maximum number of iterations for the GA is 20 iterations and a

population size of a 1,000.

The training process has been repeated several times, each time a classifier is obtained.

After the training process of the classifier is finished, we acquire each saved final classifier and

tested its performance on the FDDB and Caltech Webfaces datasets. The results are presented

in the following section.

4.6.3 Results

4.6.3.1 Training time

Since the training process was repeated many times, the training times have been recorded and

averaged. Table 4-1 shows the timings of each run and their average.

Table 4-1 Training time for each run of training GAdaboost 20

Run Number Time in Minutes

1 17

2 17

3 18

4 21

5 16

6 17

7 18

8 16

9 18

10 22

Average 18

53

4.6.3.2 Results on the Two Datasets

Each classifier obtained from the multiple training runs is tested. Figure 4-12 shows

examples of detections on images, While Figure 4-13 and Figure 4-14, show the ROC curves

of the results on both the FDDB and the Caltech Webfaces respectively.

Figure 4-12: Examples of detection of Gadaboost20 on images

54

Figure 4-13: ROC curve of multiple GAdaboost20 Classifiers on FDDB

Figure 4-14: ROC curve of multiple GAdaboost20 Classifiers on Caltech

4.6.4 Discussion

As shown from Table 4-1 Training time for each run of training GAdaboost 20 the

training time of each run varies slightly from the other with their average being 18 minutes,

and the lowest value is 16 minutes and the highest is 22 minutes. The slight variation in the

training time can be attributed to the randomness factor that is a part of the GA’s nature. In

order words, the randomly chosen initial population differ multiple times in each run which

might provide better features on some runs over the others, worse features in general will also

55

require more time in the Adaboost training of each stage in order to reach the specified hit and

false alarm rate set for each stage. In addition, non-representative features may take more time

to converge thus having more mutations and crossovers done on them than fitter (more

representable features), consequently consuming more time. The variation of time may also be

attributed to an implementation detail done in GAdboost, which is the marking of used features,

this technique has been deployed in order to explore more of the search space, yet its drawback

is that it might require more time to search for an unseen feature while randomly choosing

features from the original search space.

Concerning the detection accuracy, from both Figure 4-13 and Figure 4-14 it can be

shown that the behavior of the runs are similar in both FDDB and Caltech Webfaces dataset.

Though the performance of the runs vary, most of them perform well with the exception of

some of the runs which perform slightly worse. It can also be noted that at lower thresholds the

performances of the runs become more similar (the results become closer to each other). The

difference in performances of the runs can also be attributed to the randomness factor of the

GA. Where each run may discover a different area of the search space. Not only this, but also

the randomness happens before each stage in each run, and while injecting some random

features after removing the especially similar features. Another factor may be that the

population size was 1000 chromosomes (features) which is a small portion of the whole search

space that consists of more than 160,000 features in this case.

4.7 GAdaboost 50 iteration

4.7.1 Objective

The objective of this experiment is to test the results of yet another variation of the

GAdaboost. By conducting this experiment we observe the effects of adding GA with 50

iterations to the original Viola-Jones Rapid Object Detector on the training time and accuracy

of detection on both FDDB and the Caltech Webfaces datasets.

4.7.2 Method

A 17 stage classifier using the GAdaboost method has been trained with the following

parameters: The parameters for training are: 500 positive images and 500 negative images per

stage. The selected features are of type Haar basic features. A hit rate of 0.995 and a false alarm

rate of 0.5 have been chosen per stage. The rest of the parameters are left with the default

56

values. The parameters of the Genetic algorithm are: Each stage is trained for 3 weak

classifiers, and the maximum number of iterations for the GA is 50, and a population size of a

10,000.

The training process has been repeated several times, each time a classifier is obtained.

After the training process of the classifier is finished, we acquire each saved final classifier and

tested its performance on the FDDB and Caltech Webfaces datasets. The results are presented

in the following section.

4.7.3 Results

4.7.3.1 Training time

Since the training process was repeated many times, the training times have been recorded and

averaged. Table 4-2 shows the timings of each run and their average.

Table 4-2 Training time for each run of training GAdaboost 50

Run Number Time in Minutes

1 30

2 32

3 27

4 33

5 38

6 27

7 29

8 26

9 28

10 28

Average 29.8

4.7.3.2 Results on the Two Datasets

Each classifier obtained from the multiple training runs is tested. Figure 4-15 shows

examples of detections on images, while Figure 4-16 and Figure 4-17, show the ROC curves

of the results on both the FDDB and the Caltech Webfaces respectively.

57

Figure 4-15: Example of detections of GAdaboost50

Figure 4-16: ROC curve of multiple GAdaboost50 Classifiers on FDDB

58

Figure 4-17 ROC curve of multiple GAdaboost50 Classifiers on Caltech

4.7.4 Discussion

As shown from Table 4-1 Training time for each run of training GAdaboost 20 the

training time of each run varies slightly from the other with their average being 30 minutes,

and the lowest value is 26 minutes and the highest is 38. The GAdaboost with 50 iterations

exhibits the same behavior of the GAdaboost with 20 iterations (shown in the previous

experiment: Section 4.6). The randomness in the GA nature is deemed responsible for the slight

variation in time difference between the runs. The randomness affects the initial quality of

features, meaning that the first population may have been better in some runs than the others.

This also means that the explored part of the search space differs between the runs. The quality

of explored features can be held accountable for the difference in the time taken by the

Adaboost for training. As the case with GAdaboost 20 iterations, the variation of time can also

be due to the marking of used features. This entails that more time will be consumed while

searching for an unseen feature, to be selected from the original search space.

Concerning the detection accuracy, GAdaboost 50 showed similar behavior as

GAdaboost 20. From both Figure 4-16 and Figure 4-17 it can be shown that the behavior of the

runs are similar in both FDDB and Caltech Webfaces dataset. The performance of the runs

vary, yet only a smaller portion of the runs perform worse than the rest. In other words, most

of the runs perform well. It can also be noted that the results of the runs at lower thresholds are

59

closer to each other. The difference in performances of the runs can also be attributed to the

randomness factor of the GA which denotes that each run may discover a different area of the

search space according to the random seed. In GAdaboost, the randomness also happens before

each stage in each run, and also while injecting some random features after removing the

spatially similar features, which was meant to avoid redundancy. The population size of a 1000,

which is a small sub-set of the 160,000 feature search space, might have also contributed to the

reason that some of the runs perform poorly along with the random seed dependency.

4.8 Training speed versus Accuracy

4.8.1 Objective

In this sub-section, the objective is to have an overview of the performance of the

variations of the proposed method versus the baseline, which is the original Viola-Jones

cascade classifier. In order to achieve the former goal, the results obtained from 3 previous

experiments are compared. The three experiments are: The baseline, GAdaboost with 20

iterations and GAdaboost with 50 iterations. The performance of the 3 classifiers are obtained

and ROC on both FDDB and Caltech Webfaces datasets are drawn and compared. In addition

the time variation in training the 3 classifiers is compared and visually emphasized on a graph.

4.8.2 Results

4.8.2.1 Time Comparison Graph

Figure 4-18 plots the time taken to train each of the 3 experiments: The baseline,

GAdaboost with 50 iterations and GAdaboost with 20 iterations.

60

Figure 4-18 Training time in minutes of each of the experiments.

4.8.2.2 Accuracy on FDDB and Caltech Webfaces Datasets

Figure 4-19 and Figure 4-20 provide the baseline results versus the Y error bars,

showing the maximum, minimum and average results, for all the runs of both the 20 and the

50 iterations GAdaBoost on FDDB dataset

Figure 4-19 Y error bars for all the runs of the 20 iterations GAdaBoost on FDDB.

61

Figure 4-20: Y error bars for all the runs of the 50 iterations GAdaBoost on FDDB

Figure 4-21 and Figure 4-22 provide the baseline results versus the Y error bar graphs,

showing the maximum, minimum and average results, for all the runs of both the 20 and the

50 iterations GAdaBoost on Caltech Webfaces dataset.

Figure 4-21: Y error bars for all the runs of the 20 iterations GAdaBoost on Caltech Web Faces.

62

Figure 4-22: Y error bars for all the runs of the 50 iterations GAdaBoost on Caltech Web Faces.

4.8.3 Discussion

From both Figure 4-19 and Figure 4-20, by examining the average point on the Y error

bars it can be observed that at 500 false positives the baseline true positive rate is 64% and the

GAdaBoost 20 and 50 iterations achieved 58% 59% true positive rate respectively. While at

1000 false positives the baseline achieved 67% true positive rate versus about 64% and 65%

for the GA 20 and 50 iterations respectively.

Figure 4-21 and Figure 4-22, by examining the average point on the Y error bars we

find that at 500 false positives the baseline true positive rate is 46 % and the GAdaboost 20 and

50 iterations achieved 41% , 43% true positive rate respectively. While at 1000 false positives

the baseline achieved 51% true positive rate versus about 47% and 48% for the GAdaBoost 20

and 50 iterations respectively.

Collectively from the provided figures, it can be noted that GAdaBoost with 50

iterations has performed slightly better than the GAdaBoost with 20 iterations. It can also be

observed that at lower thresholds the GA provides closer true positive rates compared with the

baseline, than it does at higher thresholds. By drawing the Y error bars with the averages it can

be observed that most of the runs achieved high detection rates with the exception of a couple

of outliers, which showed worse performance than the majority of the runs. It can also be noted

that some of the GAdaboost runs had almost reached the same accuracy of the baseline

classifier.

63

The decrease in performance of both the baseline and GAdaboost can be attributed to

the fact that both FDDB and Caltech Web Faces dataset include occlusions and light variations,

as was mentioned at the beginning of this section. Table 4-3 provides a summary of the

performance of the baseline, GAdaboost 50, and GAdaboost 20.

Table 4-3 Summary of performance of the baseline, GAdaboost50, and GAdaboost20

Experiment

name

Training Time TPR on FDDB TPR on Caltech Webfaces

500 FP 1000 FP 500 FP 1000 FP

Baseline 67 minutes 64% 67% 46 % 51%

GAdaboost 50 30 minutes 59% 65% 43 % 48%

GAdaboost 20 20 minutes 58% 64% 41 % 47%

64

CHAPTER (5): CONCLUSIONS

With the constant automation of processes, much focus has been given to machine

learning techniques. Machine learning is the process of learning from collected data. As the

data increases, the need for techniques to reduce the dimensionality of data to reach efficient

classifiers becomes unavoidable. One of the areas that suffer from the curse of dimensionality

is the area of computer vision, specifically object detection. In this study, first the

enhancements done on the Viola-Jones Object detector are reviewed. Then comprehensive

overviews on Feature Selection methods have been assessed. Due to the multiple evidence

which suggest the powerfulness of the Genetic Algorithms and their wide use in Feature

Selection techniques, this work incorporated the use of GA into the Viola-Jones Rapid Object

Detector aiming to enhance the training time of this detector without a significant loss of

accuracy. Incorporating the use of GAs will speed up the training process by developing a set

of representative features to present to the Adaboost learning algorithm instead of going

through the set of all possible features multiple times due to its brute force nature. The

motivation behind this technique is that the feature space of such detectors is huge. For

example, for a 24X24 image the feature space can include more than 160,000 features. In order

to build the proposed method, the implementation of the Viola-Jones detector in the OpenCV

library has been modified. Functions that apply GA before the training of each stage were

added to provide the stage training (that uses the Adaboost machine learning technique) with a

meaningful set of features, disregarding the insignificant features, by doing so, we were able

to train classifiers using our proposed technique (GAdaboost). The training time taken has been

recorded and compared against that of a trained baseline classifier with the same parameters

but without the use of GAs. The accuracy of detection of the classifiers trained with the

GAdaboost technique were compared to that of the baseline classifier by testing them on both

the Face Detection Dataset and the Caltech 10,000 Webfaces dataset, and the results have

proven to be somewhat promising.

5.1 Contributions

We showed the effect of incorporating Genetic Algorithms with the Viola-Jones Rapid Object

Detector on enhancing the training speed. Experiments to show the progression of the best

individual and the average population fitness were provided. Other experiments showed the

speedup of that training process, which can be gained by the reduction of the population size.

65

Also, two variations of the GAdaboost were examined, one with 20 iterations and the other

with 50 iterations. Both experiments were run multiple times to observe the effect of the

number of iterations on the performance using the FDDB and Caltech Web Faces dataset. We

experienced that the training process became up to 3.7 times faster than the original algorithm

with a mere decrease of 3% to 4% in accuracy. We noted that the 50 iterations performed better

than the 20 iterations, and both had best case scenarios of almost reaching the baseline accuracy

at some thresholds.

5.2 Future Work

Although GAdaboost provided evidence of the successfulness of introducing GAs to

the Viola-Jones Rapid Object Detecor, there is still more room for enhancements to achieve

better results with this technique. The future extension of this contribution can be done by

experimenting with more GAdaboost parameters by varying the iteration numbers, the

population size, or finding a better stopping criteria for the GA. The parallelizable nature of the

GA can be utilized to gain an even faster training process. Another enhancement over the

GAdaboost is to introduce guided randomness to the initial population of the Genetic

Algorithms. Also the use of filter techniques in picking an originally representative population

instead of a completely random set of features which might originally include useless features.

66

REFERENCES

Amit, Y., Geman, D., & Jedynak, B. (1998). Efficient Focusing and Face Detection. In H.

Wechsler, P. J. Phillips, V. Bruce, F. F. Soulié, & T. S. Huang (Eds.), Face Recognition:

From Theory to Applications (pp. 157–173). Berlin, Heidelberg: Springer Berlin

Heidelberg. http://doi.org/10.1007/978-3-642-72201-1_8

Andrade, A. V., & Errico, L. De. (2008). Analysis of Selection and Crossover Methods used

by Genetic Algorithm-based Heuristic to solve the LSP Allocation Problem in MPLS

Networks under Capacity Constraints, (June), 1–5.

Angelova, A., Abu-Mostafa, Y., & Perona, P. (2005). Pruning training sets for learning of

object categories. Proceedings of the IEEE Computer Society Conference on Computer

Vision and Pattern Recognition, 1, 494–501. http://doi.org/10.1109/CVPR.2005.283

Ayala-ramirez, V., Garcia-capulin, C. H., Perez-garcia, A., & Sanchez-yanez, R. E. (2006).

Circle detection on images using genetic algorithms, 27, 652–657.

http://doi.org/10.1016/j.patrec.2005.10.003

Baker, J. E. (1985). Adaptive selection methods for genetic algorithms. In Proceedings of an

International Conference on Genetic Algorithms and their applications (pp. 101–111).

Chaaraoui, A. A., & Flórez-Revuelta, F. (2013). Human action recognition optimization

based on evolutionary feature subset selection. In Proceedings of the 15th annual

conference on Genetic and evolutionary computation (pp. 1229–1236).

Chandrashekar, G., & Sahin, F. (2014). A survey on feature selection methods. Computers

and Electrical Engineering, 40(1), 16–28.

http://doi.org/10.1016/j.compeleceng.2013.11.024

Chouaib, H., Terrades, O. R., Tabbone, S., Cloppet, F., Vincent, N., & Nancy, B. P. (2008).

Feature selection combining genetic algorithm and Adaboost classifiers. Pattern

Recognition, 2008. ICPR 2008. 19th International Conference on, 5(Ea 2517), 4.

http://doi.org/10.1109/ICPR.2008.4761264

Dezhen, Z., & Kai, Y. (2008). Genetic Algorithm Based Optimization for AdaBoost. In

Computer Science and Software Engineering, 2008 International Conference on (Vol. 1,

pp. 1044–1047). http://doi.org/10.1109/CSSE.2008.1040

Dimashova, M. (2012). How is Decision Tree Split Quality Computed. Retrieved from

http://answers.opencv.org/question/566/how-is-decision-tree-split-quality-computed/

Everingham, M., Gool, L. Van, Williams, C. K. I., & Winn, J. (2010). The P ASCAL Visual

Object Classes (VOC) Challenge. International Journal, 303–338.

http://doi.org/10.1007/s11263-009-0275-4

Fei-Fei, L., Fergus, R., & Perona, P. (2004). Learning Generative Visual Models From Few

Training Examples: An Incremental Bayesian Approach Tested on 101 Object

Categories. In IEEE CVPR Workshop of Generative Model Based Vision (WGMBV).

67

Ferri, F., & Pudil, P. (1994). Comparative study of techniques for large-scale feature

selection. Machine Intelligence and Pattern …. Retrieved from

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.24.4369&rep=rep1&type=pdf

Freund, Y., & Schapire, R. (1995). A desicion-theoretic generalization of on-line learning and

an application to boosting. Computational Learning Theory, 55, 119–139.

http://doi.org/10.1006/jcss.1997.1504

Goldberg, D. E., & Deb, K. (1991). A comparative analysis of selection schemes used in

genetic algorithms. In Foundations of Genetic Algorithms (pp. 69–93). Morgan

Kaufmann.

Harb, H. M. H., & Desuky, A. A. S. (2011). Adaboost Ensemble with Genetic Algorithm

Post Optimization for Intrusion Detection. Update, 2(5), 1.

http://doi.org/10.1.1.402.9250

Hasançebi, O., & Erbatur, F. (2000). Evaluation of crossover techniques in genetic algorithm

based optimum structural design. Computers and Structures, 78(1), 435–448.

http://doi.org/10.1016/S0045-7949(00)00089-4

Hjelmås, E., & Low, B. K. (2001). Face Detection: A Survey. Computer Vision and Image

Understanding, 83(3), 236–274. http://doi.org/10.1006/cviu.2001.0921

Holland, J. H. (1975). Adaptation in natural and artificial systems: an introductory analysis

with applications to biology, control, and artificial intelligence. U Michigan Press.

Itseez. (2015). Open Source Computer Vision Library.

Jacobson, L. (2012). Applying a genetic algorithm to the traveling salesman problem.

Retrieved May 8, 2015, from http://www.theprojectspot.com/tutorial-post/applying-a-

genetic-algorithm-to-the-travelling-salesman-problem/5

Jain, V., & Learned-Miller, E. (2010). FDDB: A Benchmark for Face Detection in

Unconstrained Settings.

Jeong, Y.-S., Shin, K. S., & Jeong, M. K. (2014). An evolutionary algorithm with the partial

sequential forward floating search mutation for large-scale feature selection problems.

Journal of the Operational Research Society, 1–10. http://doi.org/10.1057/jors.2013.72

Lee, J., & Lee, J. (2014). An Efficient Prediction for Heavy Rain from Big Weather Data

using Genetic Algorithm.

Li, Q., Niaz, U., & Merialdo, B. (2012). An improved algorithm on Viola-Jones object

detector. Proceedings - International Workshop on Content-Based Multimedia Indexing,

55–60. http://doi.org/10.1109/CBMI.2012.6269796

Li, R., Lu, J., Zhang, Y., & Zhao, T. (2010). Dynamic Adaboost learning with feature

selection based on parallel genetic algorithm for image annotation. Knowledge-Based

Systems, 23(3), 195–201. http://doi.org/10.1016/j.knosys.2009.11.020

68

Liang, D., Tsai, C. F., & Wu, H. T. (2014). The effect of feature selection on financial

distress prediction. Knowledge-Based Systems, 73(1), 289–297.

http://doi.org/10.1016/j.knosys.2014.10.010

Lienhart, R., & Maydt, J. (2002). An extended set of Haar-like features for rapid object

detection. Proceedings. International Conference on Image Processing, 1, 900–903.

http://doi.org/10.1109/ICIP.2002.1038171

Lillywhite, K., Lee, D. J., Tippetts, B., & Archibald, J. (2013). A feature construction method

for general object recognition. Pattern Recognition, 46(12), 3300–3314.

http://doi.org/10.1016/j.patcog.2013.06.002

Magalhães-Mendes, J. (2013). A comparative study of crossover operators for genetic

algorithms to solve the job shop scheduling problem. WSEAS Transactions on

Computers, 12(4), 164–173.

Manikas, T. W., & Cain, J. T. (1996). Genetic Algorithms vs . Simulated Annealing : A

Comparison of Approaches for Solving the Circuit Partitioning Problem Genetic

Algorithms vs . Simulated Annealing : A Comparison of Approaches for Solving the

Circuit Partitioning Problem by.

Mitchell, M. (1998). An Introduction to Genetic Algorithms. Cambridge, MA, USA: MIT

Press.

Noraini, M., & Geraghty, J. (2011). Genetic algorithm performance with different selection

strategies in solving TSP. World Congress on Engineering, II(978-988-19251-4-5), 4–9.

Retrieved from http://umpir.ump.edu.my/2609/

Oreski, S., & Oreski, G. (2014). Genetic algorithm-based heuristic for feature selection in

credit risk assessment. Expert Systems with Applications, 41(4 PART 2), 2052–2064.

http://doi.org/10.1016/j.eswa.2013.09.004

Powell, W. B. (2007). Approximate Dynamic Programming: Solving the curses of

dimensionality (Vol. 703). John Wiley & Sons.

Santana, L. E. A., Silva, L., Canuto, A. M. P., Pintro, F., & Vale, K. O. (2010). A

Comparative Analysis of Genetic Algorithm and Ant Colony Optimization to Select

Attributes for an Heterogeneous Ensemble of Classifiers.

Schölkopf, B., Luo, Z., & Vovk, V. (2013). Empirical inference: Festschrift in honor of

Vladimir N. Vapnik. Empirical Inference: Festschrift in Honor of Vladimir N. Vapnik,

1–287. http://doi.org/10.1007/978-3-642-41136-6

Srinivas, M., & Patnaik, L. M. (1994). Genetic Algorithms: A Survey. Computer, 27(6), 17–

26. http://doi.org/10.1109/2.294849

Sun, Z., Bebis, G., & Miller, R. (2004). Object detection using feature subset selection.

Pattern Recognition, 37(11), 2165–2176. http://doi.org/10.1016/j.patcog.2004.03.013

69

Tabassum, M., & Mathew, K. (2014). A Genetic Algorithm Analysis towards Optimization

solutions. International Journal of Digital Information and Wireless Communications

(IJDIWC), 4(1), 124–142. Retrieved from http://sdiwc.net/digital-library/a-genetic-

algorithm-analysis-towards-optimization-solutions.html

The OpenCV Reference Manual. (2014, April).

Tsai, C. F., Eberle, W., & Chu, C. Y. (2013). Genetic algorithms in feature and instance

selection. Knowledge-Based Systems, 39, 240–247.

http://doi.org/10.1016/j.knosys.2012.11.005

Vignolo, L. D., Milone, D. H., & Scharcanski, J. (2013). Feature selection for face

recognition based on multi-objective evolutionary wrappers. Expert Systems with

Applications, 40(13), 5077–5084. http://doi.org/10.1016/j.eswa.2013.03.032

Viola, P., & Jones, M. (2001). Rapid object detection using a boosted cascade of simple

features. Proceedings of the 2001 IEEE Computer Society Conference on Computer

Vision and Pattern Recognition. CVPR 2001, 1.

http://doi.org/10.1109/CVPR.2001.990517

Xia, H., Zhuang, J., & Yu, D. (2014). Multi-objective unsupervised feature selection

algorithm utilizing redundancy measure and negative epsilon-dominance for fault

diagnosis. Neurocomputing, 146, 113–124. http://doi.org/10.1016/j.neucom.2014.06.075

Xue, B., Fu, W., & Zhang, M. (2014). Multi-objective Feature Selection in Classification: A

Differential Evolution Approach. In G. Dick, W. N. Browne, P. Whigham, M. Zhang, L.

T. Bui, H. Ishibuchi, … K. Tang (Eds.), Simulated Evolution and Learning: 10th

International Conference, SEAL 2014, Dunedin, New Zealand, December 15-18, 2014.

Proceedings (pp. 516–528). Cham: Springer International Publishing.

http://doi.org/10.1007/978-3-319-13563-2_44

Xue, B., Zhang, M., Browne, W. N., & Yao, X. (2016). A Survey on Evolutionary

Computation Approaches to Feature Selection. IEEE Transactions on Evolutionary

Computation, 20(4), 606–626. http://doi.org/10.1109/TEVC.2015.2504420

Yusta, S. C. (2009). Different metaheuristic strategies to solve the feature selection problem.

Pattern Recognition Letters, 30(5), 525–534. http://doi.org/10.1016/j.patrec.2008.11.012

	GAdaboost: Accelerating adaboost feature selection with genetic algorithms
	Recommended Citation
	APA Citation
	MLA Citation

	tmp.1592508243.pdf.oTD9W

