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ABSTRACT 

Throughout recent years Machine Learning has acquired attention, due to the abundant 

data. Thus, devising techniques to reduce the dimensionality of data has been on going. Object 

detection is one of the Machine Learning techniques which suffer from this draw back. As an 

example, one of the most famous object detection frameworks is the Viola-Jones Rapid Object 

Detector, which suffers from a lengthy training process due to the vast search space, which can 

reach more than 160,000 features for a 24X24 image. The Viola-Jones Rapid Object Detector 

also uses Adaboost, which is a brute force method, and is required to pass by the set of all 

possible features in order to train the classifiers. 

Consequently, ways for reducing the whole feature set into a smaller representative one, 

eliminating those features that have non relevant information, were devised. The most 

commonly used technique for this is Feature Selection with its three categories: Filters, 

Wrappers and Embedded. Feature Selection has proven its success in providing fast and 

accurate classifiers.  Wrapper methods harvest the power of evolutionary computing, most 

commonly Genetic Algorithms, in finding the set of representative features. This is mostly due 

to the Advantage of Genetic Algorithms and their power in finding adequate solutions more 

efficiently.   

In this thesis we propose GAdaboost: A Genetic Algorithm to accelerate the training 

procedure of the Viola-Jones Rapid Object Detector through Feature Selection. Specifically, 

we propose to limit the Adaboost search within a sub-set of the huge feature space, while 

evolving this subset following a Genetic Algorithm. Experiments demonstrate that our 

proposed GAdaboost is up to 3.7 times faster than Adaboost. We also demonstrate that the 

price of this speedup is a mere decrease (3%, 4%) in detection accuracy when tested on FDDB 

benchmark face detection set, and Caltech Web Faces respectively. 
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CHAPTER (1): INTRODUCTION 

Machine learning and training require large feature sets, which can be time consuming 

to explore. With the advancements in this field the need for algorithms to decrease the training 

time arises. Genetic Algorithms (GA) have proven their strength in solving problems like the 

aforementioned one, especially those concerned with exploring large search spaces and 

providing acceptable results in a significantly reduced amount of time than that of the brute 

force manner. Many researches have explored the use of GA in time consuming tasks like 

Feature Selection, which aims to choose a representative small sub-set of features from the 

whole set of features (B Xue, Zhang, Browne, & Yao, 2016). 

Object detection lies in the set of machine learning techniques that require a huge search 

space for training, thus their training is time consuming. Object detection is concerned with 

detecting whether an object is present in a given image and where it lies in this image. It has 

many applications including but not limited to, face detectors in all modern state of the art 

cameras, automotive safety, video indexing, image classification, surveillance and content-

based image retrieval (Lillywhite, Lee, Tippetts, & Archibald, 2013). 

A lot of research has been applied to this area, due to its complex nature as detection is 

hard to achieve in different light conditions, occlusion and the angle in which the object appears 

in the image (Lienhart & Maydt, 2002; Lillywhite et al., 2013; Viola & Jones, 2001). 

Researchers have been trying to implement efficient high speed detectors that work in real time 

and have a high percentage of accuracy. Though the Viola-Jones detector has reached an 

impressive detection speed, it still consumes a lot of time in training. Viola-Jones uses 

Adaboost, a type of boosting algorithms, to select and combine weak classifiers to form a strong 

one. Adaboost is simple and adaptive (Dezhen & Kai, 2008), yet it operates in a brute force 

manner, passing by the set of all features multiple times. This can be very time consuming, as 

the search space consists of a set of more than 160,000 features for a 24X24 image.  

This thesis is multi-disciplinary, as it deals with three sub-research areas in Computer 

Science. The three main areas are Computer Vision (CV), Machine Learning (ML) and 

Statistics, and Evolutionary Computing (EC). This thesis’s main focus is on Object detection 

which lies under CV, Boosting and Feature Selection which is a sub-area of ML and Genetic 

Algorithms with is a famous algorithm in EC. In brief this work aims towards enhancing the 

training time taken by the Adaboost algorithm through Feature Selection using Genetic 
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Algorithms. Specifically it aims to speed up the training process of the Viola-Jones Rapid 

Object Detector by finding a small set of representative features to be provided to the Adaboost 

algorithm, instead of the original method of going through the set of all possible features in a 

brute force manner. 

 

1.1 Problem Definition 

Having Robust and efficient detectors has become the goal of many research over many 

years. An ideal detector can be described as one that is both efficient and provides plausible 

results. A lot of research has been done in order to enhance several machine learning techniques 

and try to reach the previously mentioned goal of ideal detectors. 

Though Boosting algorithms like Adaboost are simple and effective, they suffer from 

lengthy training processes due to their brute force nature. With the advancement of Machine 

Learning and the abundance of data in recent years (Yusta, 2009), the drawback of these 

algorithms becomes more apparent, as the dimensionality and the volume of data directly affect 

the training time. For example, in the training of the Viola-Johns Rapid Object detector, the 

Adaboost algorithm goes through the set of all possible features in a brute force manner, for 

the training of each weak classifier. This can be very time consuming, as the search space 

consists of a set of more than 160,000 features for a 24X24 image (Viola & Jones, 2001). Some 

of the formerly mentioned features are non-representative as they have poor predictive power 

of the object’s existence in this image. Selecting a representative set of features and discarding 

the non-useful ones can be achieved through Feature Selection. Feature selection, allows for 

the decrease of the search space with minimum loss of quality, as it focuses on eliminating 

those features that are not useful when solving the problem at hand. Applying this concept to 

the Adaboost algorithm will help in overcoming the drawback of its lengthy training process 

while benefiting from its simplicity and adaptively. 

 

1.2 Motivation 

The Viola-Jones object detector uses a cascaded stage classifier in order to rapidly 

detect objects. However, the training of this classifier is time consuming, since the training 

algorithm utilized is Adaboost which works by going through the set of all possible features to 
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evaluate each feature in a brute force manner to choose one weak classifier. This process takes 

place multiple times as the essence of boosting is to combine multiple weak classifiers to get a 

strong one. The cascaded structure makes training even slower as the previously mentioned 

process is repeated for each stage of the cascaded classifier. The number of times the Adaboost 

algorithm passes through the set of all possible features to train a cascade classifier, can be 

obtained by summing up the number of weak classifiers in all the stages as shown in Equation 

1.1, where WC is the number of weak classifiers per stage, and n is the number of stages in the 

cascade classifier.  

𝑖𝑡𝑒𝑟𝑠 = ∑ 𝑊𝐶𝑖

𝑛

𝑖=0

                                 (1.1) 

Examining the set of all possible features multiple times can be analogous to expanding 

the feature set. In order to have a deeper understanding of the effects of repeating the number 

of iterations a look at how much the feature set expands is necessary. The total number of 

features examined in training a cascade classifier is obtained by multiplying the number of 

iteration done by the Adaboost algorithm by the total number of features in the original feature 

set as shown in Equation 1.2, where TF is the total number of features examined, iters in the 

number of times the Adboost passes by the original search space (which can be obtained from 

Equation 1.1), and osp is the number of features in the original search space 

𝑇𝐹 = 𝑖𝑡𝑒𝑟𝑠 ∗ 𝑜𝑠𝑝                              (1.2) 

 As an example, if we built a simple 5 stage classifier and the number of features are 10, 

15, 20, 25, 30 in stages 1, 2, 3, 4 and 5 respectively, then the total number of times the Adaboost 

passed by the set of all possible features (the original search space) in the trainng phase can be 

calculated by summing up the number of features, i.e. 10+15+20+25+30 which is equal to 100 

in this final trained classifier, which is analogous to an increased search space by a 100 times, 

as the Adaboost would have passed by 160,00000 features if the original search space had 

160,000 features (160,000 X 100 from Equation 1.2) 

In conclusion, by eliminating the unnecessary features, the time taken to train a cascade 

classifier can be significantly reduced. This can be achieved by the means of Feature Selection, 

where the best features are chosen and the unnecessary ones are discarded. Feature Selection 

can be achieved by exploiting GAs, since GAs are widely used heuristics in Feature Selection 

(Tsai, Eberle, & Chu, 2013). Another motivation for using GA with Feature Selection is that 
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inducing GAs and Feature Selection mechanisms have been continuously studied for decades 

(Chaaraoui & Flórez-Revuelta, 2013; Yusta, 2009) and have proven to be successful.  

1.2.1 Primary Experiments 

This section provides 2 experiments to support the motivation of this work. It shows 

evidence of how vast the search space of features can be by examining the effect of increasing 

Haar feature types on the total number of features and the effect of image size of the number 

of features in the search space. Moreover, an experiment was done to compare the brute force 

technique versus the GAs in solving the Travelling Salesman Problem. 

1.2.1.1 Number of Features Per image 

The main problem to be dealt with in order to enhance the performance of the Viola-

Jones detector, is the vast search space. To give an idea of how vast this search space can get; 

a simple experiment has been carried out. This experiment calculates the number of features 

(the search space) once when varying the image dimensions and another when increasing the 

types of Haar features. This experiment considers getting all possible sizes of each feature and 

all possible positions by shifting the window one pixel. Figure1-1 shows the exponential 

growth of the search space when increasing the image dimensions. Figure 1-2 also shows the 

growth of the search space by increasing the types of Haar features used. 

 

 

Figure1-1: The effect of varying the image size on the number of features 
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Figure 1-2: The effect of increasing Haar feature types on the total number of features per a 24x24 image 

 

1.2.1.2 Performance of GA in Travelling Salesman Problem (TSP) 

With a vast search space the main problem is time. It’s a time consuming process to go 

through the search space one by one in a brute force manner (as done by the original Viola-

Jones implementation). The former point is the motive for this work, since Genetic algorithms 

in general are efficient in searching large spaces (Lillywhite et al., 2013). To further show the 

effectiveness of GA on speed and accuracy an experiment was conducted. The famous 

Travelling Salesman Problem (TSP) has been examined once using brute force and once using 

Genetic Algorithms (implementation used was done by (Jacobson, 2012)). The Travelling 

Salesman Problem is concerned with finding the shortest route of a journey between given 

countries. For this experiment the same 9 countries have been used for both the GA and the 

brute force methods. The brute force method is done by exploring all the possible routes (which 

are 9! (362880) routes) in this case, then choosing the shortest one. The results of the 

experiment show that the GA achieved a comparable accuracy by evaluation a 100 generations 

in only 5.9% of the time taken by the brute force method. Table 1-1  shows the exact results of 

the timing and the shortest distance found by both the brute force and the GA. 
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Table 1-1 Comparison between Brute Force and GA in TSP 

 

 

1.3 Organization of the Thesis 

The rest of the thesis is organized as follows: Chapter 2 provides a comprehensive 

background on the main topics covered in this thesis, like the Viola-Jones Rapid Object 

Detector and the enhancements done over their work. Basic Genetic Algorithm concepts are 

discussed and previous work proving their strength is reviewed. Feature Selection concepts and 

terminology are provided. Finally previous work that utilizes Genetic Algorithms in Feature 

Selection is examined. Chapter 3 explains the proposed method, while providing details on 

implementation and tools used. Chapter 4 explains the experimental setup and details of the 

experiments provided. Chapter 5 concludes the thesis and discusses future work. 
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CHAPTER (2): BACKGROUND  

This chapter provides background on the three main concepts used in this work, by 

discussing the Viola-Jones object detector. Details on Viola-Jones Rapid Object Detector and 

some of the research that aims to enhance this detector are provided, since the enhancement of 

the training time of this detector is the main objective of this work. After that an overview on 

GAs and their main concepts are discussed, with some previous work that sheds light on the 

success and wide usage of these algorithms. Feature Selection is then mentioned, with their 

categorization and main concepts. Finally previous work that combined both Feature Selection 

and Genetic Algorithm is presented. 

2.1 Object Detection background 

As this research area is  relatively new, as mentioned by Hjelmas  et al. (Hjelmås & Low, 

2001) that  the face detection problem has attained little attention before 1998 (Amit, Geman, 

& Jedynak, 1998). This is apparently not the case now since this area has gained more attention 

by the time that Herman et al. conducted their survey (Hjelmås & Low, 2001). Since then many 

researchers have focused on this area. Scientists have been working and contributing to 

detectors over the past decade. Viola-Jones is an example of widely used detectors. This section 

will provide a brief introduction on this detectors; since it provides the basis for this research. 

2.1.1 Viola-Jones Rapid Object Detector 

Viola et al. devised a rapid object detector, with 3 major contributions. The first 

contribution is that they provided an image representation called the integral image that allows 

the features to be evaluated fast. Their second contribution is that they devised a method for 

construction of the classifier though the selection of important features using Adaboost. Their 

third contribution is successively combining complex classifiers in a cascade structure which 

allows for fast detection on the test images (Viola & Jones, 2001). 

The basic and main 3 components of the Viola-Jones classifiers are: 

 The Haar features 

 Integral Image 

 Adaboost 

 Cascaded structure 



8 

 

2.1.1.1 Haar Features 

The use of features has proven to be better than using pixels, as features proved a set of 

comprehensive information that can be learned by machine learning algorithms. Features 

reduce the in-out class variability compared to that of the raw pixels (Lienhart & Maydt, 2002; 

Viola & Jones, 2001). This is in general, a clear incentive that provides more reasons to use 

features instead of raw data. For this particular system a critical issue is speed of calculation 

and the features operate much faster than raw pixels (Viola & Jones, 2001). The Haar features 

used are shown in Figure 2-1. The value of the feature is obtained by subtracting the sum of 

the pixels in the white region from the sum of the pixels in the black region. The four features 

used are those that are best for distinguishing upright front-facing faces. For example, feature 

(c) in Figure 2-1 can detect the nose area as its lighter than the eyes and feature (a) can detect 

eyes as the eyes region is darker than the region under it (Viola & Jones, 2001). For each image, 

each of the four Haar features is computed in all possible sizes and all possible locations which 

provide a huge number of features.  

 

 

 

Figure 2-1: Haar features relative to the enclosing detection window (Viola & Jones, 2001) 

 

2.1.1.2 Integral Image 

Viola et al. introduced a new concept called the integral image in order to facilitate the 

computations of features since there are a lot of them. Any position in the integral image x, y 

is  the sum of all the pixels above and to the left of x, y inclusive (Viola & Jones, 2001). Figure 

2-2 shows the illustration of the integral image. For example, the value of location 1 in the 
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integral image is the sum of pixel values of rectangle A.  Similarly the value of location 2 in 

the integral image is the sum of pixel values of rectangle A and B. The value at location 3 is 

A+ C. As for the sum of pixel values in rectangle D, it can be obtained by subtracting the value 

at location 2 and 3 from the value at location 4 then adding the value at location 1, as its going 

to be subtracted twice while subtracting both 2 and 3, since the value at 1 is contained in both 

2 and 3. The equation of obtaining the pixel values at rectangle D is 4 +1- (2+3). The integral 

image reduces the calculation cost of pixels as it can calculate the sum of pixel values at any 

given rectangle by 4 array accesses at most. 

 

 

Figure 2-2: Integral image illustration(Viola & Jones, 2001) 

2.1.1.3 Boosting 

The authors chose Adaboost as a method to obtain their strong classifier. “Boosting is 

an approach to machine learning based on the idea of creating a highly accurate prediction rule 

by combining many relatively weak and inaccurate rules.” (Schölkopf, Luo, & Vovk, 2013). 

Adaboost , which was proposed by Freund and Schapire (Freund & Schapire, 1995), has been 

the first practical boosting algorithm and is still widely used in many applications (Schölkopf 

et al., 2013). Adaboost is simple and adaptive (Dezhen & Kai, 2008) yet it operates in a brute 

force manner, passing by all the set of features multiple times. Figure 2-3 explains the Adaboost 

algorithm, where each round of boosting selects one feature from the set of all possible features. 
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Figure 2-3: Adaboost Algorithm(Viola & Jones, 2001) 

The general idea of the algorithm works as follows: 

For a number of iterations T: 

 Pass through the set of all possible features and calculate the error of each one on the given 

images.  

 Choose the best feature (the one with the lowest error) as the first weak classifier.  

 Update the sample images and their corresponding weights, by putting more weights on 

the wrongly classified images. 
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 Go through the next iteration, until it finds the set of best features to be used in 

classification. 

 

As shown from Figure 2-3 the weights are updated as a function of the error produced by the 

chosen classifier. In other words, the samples that has been misclassified by the chosen 

classifier are given more weight. These weights are used to inform the training of the weak 

classifiers i.e, the classifier that correctly classifies samples with higher weights are considered 

to be of better performance than the other classifiers. 

 

2.1.1.4 Cascade Classifier 

One of the important contributions of (Viola & Jones, 2001) is the cascaded classifier. This 

structure of the classifier allows for better accuracy while radically reducing the time consumed 

in detection (Viola & Jones, 2001). The cascaded classifier is a stage classifier where the 

thresholds vary. The first stages have a low threshold, thus detecting all the true positive while 

eliminating the strong negatives, before the more complex classifiers are called to achieve less 

false positives. Figure 2-4 provides a description of this classifier. 

 

    Figure 2-4 Schematic description of a detection cascade(Viola & Jones, 2001) 

 

From Figure 2-4 it is clear that a series of classifiers are applied to every sub-window. 

The initial classifier is able to eliminate a huge number of negative examples with little 

processing. The following stages of classifiers then eliminate additional negatives, yet they 

apply more computations. After several stages of processing the number of sub-windows are 

drastically reduced (Viola & Jones, 2001). 
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2.1.1.5 Results 

The resultant classifiers, on which the authors of  (Viola & Jones, 2001) trained and 

based their experiments on is a cascaded one of 38 layers. The training set consisted of a set 

of 24X24 pixel images, of which 4916 faces and 9544 non faces. Within these non faces there 

are 350 million sub-windows and the total number of features is 6061. This detector was 

tested on the MIT+CMU frontal faces test. This set has a total of 130 images with 507 labeled 

frontal faces. The results are shown in the Receiver Operator Curve (ROC) in Figure 2-5. 

.  

Figure 2-5: Roc Curve for detector on MIT+CMU dataset (Viola & Jones, 2001) 

 

2.2 Enhancements over Viola-Jones 

Some of the researchers used the Viola-Jones algorithm as a base for their research then 

proposed and implemented their concepts to provide even more powerful detectors. Li et al. 

proposed new enhancements that include SVMs and stopping criteria to detect more objects 

instead of just frontal-upright faces. Lienhart et al. proposed the increase of Haar features used. 

This section will give more details about both approaches. 

2.2.1 The use of SVMs and new stopping criteria 

Li et al (Q. Li, Niaz, & Merialdo, 2012) have achieved 3 major contributions. They used 

multiple feature images instead of just gray ones used by Viola-Jones, They devised a way to 

avoid the non-converging in training the classifier. They also outputted a weighted value as a 

confidence measure to whether the test image contains the desired objects or not. 
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The training data is preprocessed and a set of 6 image features are produced, the 6 types 

are: Gray image, Local Binary Patterns (LBP), EDGE, L-channel, A-channel and B-channel 

images. They tackled the problem of the non-converging training set in the cascaded classifier 

since the stopping criteria is a preset false alarm rate which sometimes is never reached. In 

order to fix this, they introduced a new stopping criterion, which is the maximum variance ratio 

(R) between the score of the positive and the negative training images. The main idea is to 

separate the positive and negative as much as possible and keep the inner variance of each class 

small. The score is defined as “the stage sum of the last stage classifier of a survived image 

patch. Stage sum is the cumulative sum of Haar like features convolved with the image patch 

(Q. Li et al., 2012). If R keeps increasing the training continues, the training classifier will 

converge since R will not be increasing all the time.  As for the detection part, a key point based 

SVM is incorporated to get a confidence measure (to weigh the output score). The authors 

tested their algorithm on the TRECVID 2011 development dataset, they chose four objects 

which are: Computers, Scene_Text, Telephone and Hand. In all of these categories their 

algorithm performed much better than the Viola-Jones implementation in OpenCV. The results 

can be seen in Figure 2-6. 

 

Figure 2-6 Object detection average precision on selected objects (top 40 in 113 test image)(Q. Li et al., 2012) 

 

2.2.2 Increasing Haar Features 

The authors of (Lienhart & Maydt, 2002) approach in enhancing the Viola-Jones Rapid 

Object Detector differs from the approach pursued by the authors of (Lienhart & Maydt, 2002). 

They wanted to enhance Viola-Jones by increasing the Haar features to more than the 4 used 

in the original work. They used 45 degrees rotation of feature that adds domain knowledge to 

the learning framework. These features can be seen in Figure 2-7.   
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Figure 2-7 Extended set of Haar features black and white regions have negative and positive weights  (Lienhart & 

Maydt, 2002) 

 

Increasing the type of features from 4 to 14 substantially increased the number of 

generated features per image. Table 2-1 gives a summary of the number of features inside a 

24x24 image window per feature prototype from Figure 2-7. The upright features can be 

computed fast by the integral image (Lienhart & Maydt, 2002). As for the rotated ones the 

authors created a rotated summed area table to enable them to calculate the value of the rotated 

features fast. The results shows that with these extended set of features the classifier performs 

better than the original one that had only 4 features, they also had comparable computation 

complexity. Figure 2-8 shows the ROC curve of the 2 classifiers with 12 stages. 

 

Table 2-1:  Number of features inside a 24X24 image for each prototype (Lienhart & Maydt, 2002) 
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Figure 2-8: Basic versus extended features set. (Lienhart & Maydt, 2002) 

 

2.3 Feature Selection. 

A feature can be defined as measurable property of the data being observed 

(Chandrashekar & Sahin, 2014). Feature Selection is the process of reducing the whole search 

space into a sub-set of relevant features. This helps in removing noise and irrelevant features 

reducing time while providing good prediction results (Chaaraoui & Flórez-Revuelta, 2013; 

Chandrashekar & Sahin, 2014; Jeong, Shin, & Jeong, 2014; Lee & Lee, 2014; Liang, Tsai, & 

Wu, 2014; Oreski & Oreski, 2014; Santana, Silva, Canuto, Pintro, & Vale, 2010; Vignolo, 

Milone, & Scharcanski, 2013; Xia, Zhuang, & Yu, 2014; B Xue et al., 2016; Bing Xue, Fu, & 

Zhang, 2014; Yusta, 2009). The need for feature selection methods arose due to the availability 

of high dimensional data with hundreds or thousands of attributes. In other words Feature 

Selection methods are ways to solve the curse of dimensionality (Powell, 2007). 

Feature Selection techniques are divided into 3 main categories which are Wrappers, 

Filters and Hybrid (Embedded) methods. (Chaaraoui & Flórez-Revuelta, 2013; Liang et al., 

2014; Oreski & Oreski, 2014; Santana et al., 2010; Vignolo et al., 2013; Yusta, 2009). Table 

2-2 provides a summary for these three categories. 

2.3.1 Filters 

Filter techniques rely on the intrinsic properties of the data without involving a 

classification technique (Oreski & Oreski, 2014). They use variable ordering techniques as 

criteria for selection by ordering. Variables that are below a certain threshold and excluded 

from the original variable set (Chandrashekar & Sahin, 2014). A basic criteria of the chosen 
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feature is to have useful information about the classes of the data. This property can be called 

feature relevance, which is the ability of this feature to discriminate between classes. Feature 

reference can be defined as “feature can be regarded as irrelevant if it is conditionally 

independent of the class labels.” (Chandrashekar & Sahin, 2014). Some examples used for filter 

techniques are: Correlation criteria, mutual information (Chandrashekar & Sahin, 2014). 

The advantages of the filter methods are: That they are computationally efficient, avoids 

overfitting and has proven to work well on certain datasets (Chandrashekar & Sahin, 2014). 

They don’t rely on learning algorithms which are biased and change the data to fit the learning 

algorithm. The disadvantages of some of these methods are that they don’t consider the feature 

in relation with other features. In other words, features that are not informative on their own 

but give valuable information when combined with other features might be disregarded. 

(Chaaraoui & Flórez-Revuelta, 2013; Chandrashekar & Sahin, 2014; Oreski & Oreski, 2014; 

Santana et al., 2010; B Xue et al., 2016). 

2.3.2 Wrappers 

Wrapper methods use classifier predictions as a fitness measure for the sub-set of 

features (Chaaraoui & Flórez-Revuelta, 2013; Chandrashekar & Sahin, 2014; Jeong et al., 

2014; Lee & Lee, 2014; Liang et al., 2014; Oreski & Oreski, 2014; Santana et al., 2010; 

Vignolo et al., 2013; Xia et al., 2014; B Xue et al., 2016; Bing Xue et al., 2014; Yusta, 2009). 

Since evaluating multiple subsets is an N-P hard problem, Wrappers become computationally 

expensive especially with large datasets. Wrappers often utilizes metaheuristics like GAs, 

Particle Swarm Optimization (PSO) and Ant Colony optimization (ACO). Though Wrappers 

are generally more accurate than Filters, their main drawback is computational complexity 

since each sub-set of features is passed to a classifier for training and testing to in order to 

calculate the accuracy (Chaaraoui & Flórez-Revuelta, 2013; Chandrashekar & Sahin, 2014; 

Oreski & Oreski, 2014; Santana et al., 2010; B Xue et al., 2016). Another drawback of these 

methods which use classifier prediction as the objective function is that these classifiers are 

prone to overfitting. Overfitting happens when the classifier lacks the ability for generalization 

and only acts well on the data used for training. In this case the classifier will be biased and 

provide poor classification results (Chandrashekar & Sahin, 2014).  

2.3.3 Embedded 

Embedded methods are hybrid methods that try to combine the advantages of both 

Wrappers and Filters. It aims to reduce the time taken by wrappers in re-classifying the sub-
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sets by incorporating the subset selection while training. In (Chandrashekar & Sahin, 2014) 

some of the embedded methods techniques are provided and discussed. 

Table 2-2:  Summary of feature selection techniques 

 Filters Wrappers Embedded 

Definition Relies on general properties 

of data. 

Uses machine learning 

approaches as black boxes 

to score features. 

Combines both the filter and 

wrapper approach. 

Advantages Computationally more 

efficient in comparison to 

wrapper approach. 

Provides more accurate 

subsets than filters. 

Tries to reduce the time taken by 

wrappers by including filters in the 

learning process 

Disadvantages Provides worse subsets. Involves computational 

overhead to score features. 

 

 

2.4 Genetic Algorithms 

This section provides background on Genetic Algorithms (GAs), their techniques and the 

processes involved such as mutation, crossover and selection methods. 

2.4.1 Overview 

Genetic Algorithms are heuristic mechanisms that are successful in solving many 

difficult problems. They can be considered the best solution for high complexity problems such 

as the combinatorial optimization (Tabassum & Mathew, 2014). GAs are most likely the first 

Evolutionary Computing (EC) technique to be widely applied to Feature Selection problems 

(B Xue et al., 2016). Genetic Algorithms (GAs) were first proposed by John Holland (Holland, 

1975).  They are optimizing procedures that are devised from the biological mechanisms of 

reproduction and evolutionary science (survival of the fittest) (Andrade & Errico, 2008; Harb 

& Desuky, 2011; Sun, Bebis, & Miller, 2004). In natural, individuals compete for scarce 

resources like food and shelter. The best individuals that are suited for this competition survive. 

Adaptation to the surrounding environment is essential for the survival of a species. The traits 

that uniquely characterizes the individual determines its chances for survival (Srinivas & 

Patnaik, 1994). These traits are encoded in each individual as genes. The best genes survive 

through generations by means of reproduction. In other words, fit genes enable individuals to 

survive, reproduce, consequently passing on their fit genes to their offspring, which in turn will 

pass through competition and those who survive will reproduce passing on their genes. This 
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will ensure that over the course of generations, the genes in the offspring are to be refined, 

providing fitter generations that are more capable of adapting to the environment. 

GAs resemble survival of the fitness mechanism as they start with an initial random 

population that propose solutions to the problem at hand (Mitchell, 1998; Sun et al., 2004). 

Each individual in the population is encoded (usually as a string of bits) in order to mimic a 

chromosome. This denotes that the parameters of the problems are joined to form one possible 

solution chromosome.  In order to evaluate the fitness of this individual, it’s associated with a 

fitness score that governs its ability to survive through generations and breed. This score is 

provided by an objective that is set and is referred to as a fitness function. The main Idea of 

GAs is to get those individuals which prove to be promising, pass them on to the reproduction 

phase where their genes are combined and slightly modified to provide offspring. The fitness 

score controls the probability of an individual to be chosen; as the selection process usually 

favors fitter individuals i.e. individuals of a higher fitness score. This means that fitter 

individuals have the chance to be selected more than once and poorly performing individuals 

might not be selected at all. This is done several times and finally the fitness of the population 

should converge to an optimal or a near optimal solution. 

The formation of new offspring in the reproduction phase is attained by means of 

crossover and mutation. Crossover is the process where genes of 2 individuals are combined to 

form a new individual. Mutation occurs by changing one gene of the produced children from 

the crossover phase. (Lillywhite et al., 2013). Crossover allows for fast exploration of the 

search space, while mutation increases the probability of the exploration of all of the search 

space. In other words, it decreases the probability of having an unexplored solution in the 

search space.  

In brief, the basic operations that guide the GAs search are: Encoding, evaluating, 

selecting and recombining individuals. These operation are preformed iteratively (Sun et al., 

2004). They stop at a predefined stopping criteria or when the given maximum number of 

iterations is reached. Figure 2-9 explains how GA works. 
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Figure 2-9: How GAs Work (Lee & Lee, 2014) 

 

2.4.2 GA Details 

2.4.2.1 Crossover Types 

Crossover is the process where fit individuals are combined to form new individuals 

that will be a part of the next generation. This process helps in the exploration of the search 

space. Crossover has many forms; the most important ones are discussed in the following 

subsections. 

2.4.2.1.1 One-Point Crossover 

One-point crossover is the simplest form of crossover. In this type, a point is chosen 

randomly and the 2 parent chromosomes are cut at this point. Then the sections after this 

cut, are exchanged to form the 2 children (Hasançebi & Erbatur, 2000; Magalhães-Mendes, 

2013).  Figure 2-10 visually illustrates the one-point crossover technique. 

 

Figure 2-10: Single point Crossover (Hasançebi & Erbatur, 2000) 
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2.4.2.1.2 Two-Point Crossover 

Two-point crossover is when the 2 parents are cut at 2 different points. It is done by 

either swapping the inner portions (genes between the 2 points) or the outer portion, since both 

options provide the same results (Hasançebi & Erbatur, 2000; Magalhães-Mendes, 2013). 

Figure 2-11 illustrates the two point crossover. 

 

Figure 2-11: Two-point crossover (Hasançebi & Erbatur, 2000) 

2.4.2.1.3 Multi-point crossover 

Multi-point crossover is an extension to the two point crossover where the two parents 

are cut at 3 or more points and the portions between these points are exchanged. This type of 

crossover helps the exploration of more parts of the search space (Hasançebi & Erbatur, 2000). 

2.4.2.1.4 Uniform Crossover 

In this type of crossover a bit mask of the same length of the individual (chromosome) 

length is randomly created. Each bit of the mask determines the gene would be copied from 

which parent into the child. 1 means the gene will be transferred from parent number one, 0 

indicates that the gene will be copied from parent number two (Hasançebi & Erbatur, 2000). 

Figure 2-12 illustrates the uniform crossover. 

 

Figure 2-12: Uniform crossover(Hasançebi & Erbatur, 2000) 

 



21 

 

2.4.2.2 Selection Mechanisms 

Selection mechanisms are crucial as they choose the individuals that will participate in 

the next generation. If the best individual is always chosen, premature convergence will occur 

(Andrade & Errico, 2008). Premature Convergence is when a highly fit gene (but not optimal) 

dominates generations, causing the population fitness to converge to a local maxima. As a form 

of avoiding this problems many selection techniques where devised. 

2.4.2.2.1 Tournament Selection 

Tournament selection is the most commonly used selection mechanism, due its 

simplicity and straight forward implementation (Goldberg & Deb, 1991; Noraini & Geraghty, 

2011). It’s achieved by randomly selecting a number of individuals from the population. These 

individuals compete and the fitter one is chosen to participate in the next generation. The 

number of competing individuals is called tournament size and is usually set to two (Noraini 

& Geraghty, 2011). Tournament section gives each individual the chance to participate, thus 

preserving diversity though this might lead to slower convergence. Tournament selection has 

several advantages which include efficient time complexity, especially if implemented in 

parallel, low susceptibility to takeover by dominant individuals and no requirement for fitness 

scaling or sorting. (Baker, 1985; Goldberg & Deb, 1991; Noraini & Geraghty, 2011). Figure 

2-13 shows an illustration of the tournament selection mechanism. 

 

 

Figure 2-13 Tournament selection(Noraini & Geraghty, 2011) 
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2.4.2.2.2 Roulette Wheel Selection 

 Proportional Roulette Wheel Selection 

In proportional Roulette Wheel Selection, the probability of an individual being 

chosen is directly proportional to its fitness value, i.e the fitter individual has a 

higher probability of being selected. The probability of choosing a parent is 

analogous to a roulette wheel and the size of its segments are proportional to 

each parent’s fitness. Thus parents with higher fitness have larger segments on 

the roulette wheel, consequently more chance of being chosen. The probability 

of choosing  an individual is calculated by equation (2.1) (Noraini & Geraghty, 

2011).  Where p is the probability of choosing individual, f  is the fitness value 

of individual. N is the total number of individuals the population. 

 

𝑝𝑖 =
𝑓𝑖

∑ 𝑓𝑖
𝑛
𝑖=0

                                    (2.1) 

 

This type of selection mechanisms gives chance to all of the individuals in the 

population, preserving the diversity. Yet, it gives higher probability to fittest 

individuals, which may cause these individuals to dominate populations fast 

which eventually leads to premature convergence, and loss of genetic diversity. 

For example if the population contains two fit induvial and the rest of the 

population has poor fitness, these two fit individuals will dominate the 

population quickly. On the other hand, if the whole population is of similar 

fitness, the population will face difficulty in evolving to a better solution since 

both probabilities of fit and unfit individuals are similar. (Noraini & Geraghty, 

2011) 

 

 

 Rank-Based Roulette Wheel Selection 

At the beginning the individuals are sorted according to their fitness values, and 

the probability of one being chosen is based on its rank in the sorted array. Rank 

based selection is not influenced by “super-individuals” or the spread of fitness 

values. Rank-based selection depends on a mapping function that maps the 

indices of the individual in the sorted list according to their fitness values. Thus, 

the performance of this technique depends heavily on the mapping function 
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chosen. (Noraini & Geraghty, 2011). Figure 2-14 shows the Roulette Wheel 

selection mechanism. 

 

 

Figure 2-14 Roulette wheel selection (Noraini & Geraghty, 2011) 

 

2.4.2.2.3  Deterministic Sampling 

In deterministic sampling the average fitness of the population is calculated. After that, 

the fitness value of each individual is divided by the average fitness of the population and the 

integer part is stored. If the integer is greater than 1, the individual is chosen, else the individual 

will not be selected to participate in the next generation. The rest of the population size is then 

filled by choosing individuals with greater fractions. (Andrade & Errico, 2008) 

   

2.4.2.2.4 Stochastic Remainder Sampling  

Stochastic random sampling is identical to deterministic random sampling where the individual 

is chosen based on the integer part resulting from the operation of dividing the individual 

population by the average population. The rest of the population size is filled by the means of 

a roulette wheel selection. 

 

2.4.2.3 Mutation 

Mutation is another form of exploring the search space, it reduces the probability of 

having an unexplored solution. Mutation is mainly concerned with changing a one gene of the 

child produced by the crossover process, according to a preset probability. 
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2.4.3 Strength of GAs 

GAs are powerful optimization algorithms that have proven their success in many fields. 

Tabassum et al. Mentioned that “It was proved that genetic algorithms are the most powerful 

unbiased optimization techniques for sampling a large solution space” (Tabassum & Mathew, 

2014). In their work (Ferri & Pudil, 1994) highlighted the point of strength of the GAs which 

is the ability to perform the search in a near optimal region due to the inherit randomizations 

used in the search. In this sub-section general works on Genetic Algorithms is reviewed. 

2.4.3.1 Circle Detection Using GAs 

Ayala-ramirez et al. proposed a method to detect circles in an image using GAs. They 

preprocessed the image by a Sobel filter and got all the edge points in an image, then they 

took 3 points at a time to test if they formed a circle (Ayala-ramirez, Garcia-capulin, Perez-

garcia, & Sanchez-yanez, 2006). They generated a circle with these 3 points and found virtual 

points that lie on this circle. After that, they examined how many of these virtual points 

actually exist in the edge points they got after applying the Sobel filter, considering this as the 

fitness function of the GA. This method has been tested on both synthesized images where the 

authors put random circles in an image, and on natural images taken by a digital camera; in 

both cases this method achieved good accuracy with a worst case scenario of 92%, in a short 

amount of time as shown in Table 2-3 and Table 2-4. 

 

Table 2-3 Discrimination results on synthetic images (Ayala-ramirez et al., 2006) 

 

 

Table 2-4 Discrimination results on natural images (Ayala-ramirez et al., 2006) 
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2.4.3.2 Feature Construction Using GAs 

Lillywhite et al.  devised a system that uses genetic algorithms to construct features, as little 

research is concerned with the point of feature construction (Lillywhite et al., 2013). They 

used Adaboost to build a strong classifier from a series of weak classifiers. Their features; 

which they called ECO features, are generated using a Genetic Algorithm, that creates an 

ordering of basic transformations like Sobel operator, Canny edge, Pixel statistics, 

Histogram, Gaussian blur...etc. the initial population is  some vectors that are produced after 

the application of a series of these transformations on a sub-image I (x1,y1,x2,y2).  

After having the initial population, a genetic algorithm is applied with mutation and 

crossover processes. The genes are the elements of an ECO feature which includes the 

transformation type and the transformation parameters. They associated a weak classifier 

with each ECO feature in order as a means for calculating a fitness score. This fitness score 

is associated with how well the feature identifies an object in a small training set. The weak 

classifier is a single perceptron that maps the feature vector to a binary classification through 

a weight and bias. The weights are updated through the error rate, which is subtracting the 

perceptron output from the original image classification. The fitness score equation depends 

on the number of true positives, false negatives, true negative and false positives. 

The following step that takes place after the Genetic algorithm has found good ECO 

features is to build a strong classifier based on the weak classifiers (the perceptrons in this 

case) using Adaboost algorithm. 

This method has been tested against previously published papers using same dataset 

(Caltec dataset) for comparison and proved to be significantly more accurate overall. These 

results are shown in Table 2-5. 

 

 

Table 2-5: comparison on Caltech dataset to other methods 
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2.4.3.3 GAs versus Simulated Annealing in Mean Cut sizes 

There exists other optimization methods that serve well, yet for some experiments GAs 

have proven to perform better. This might be due to the advantages of GAs, which are 

probabilistic and not deterministic, they work well with stochastic systems and have the 

ability to be better at avoiding to be stuck at a local maxima due to their parallelizable 

nature. 

Manikas et al. provided a comparison in their paper between GAs and simulated 

annealing in the problem of optimizing the placement of the circuit’s physical components 

on a chip (Manikas & Cain, 1996). The problem of circuit partitioning can be represented 

as a graph with a set of vertices V and a set of edges E the partitioning process splits the 

circuit into groups of equal sizes and tries to find the group with minimal interconnections 

called a cutsize. They used 3 circuits and applied both the GA and simulated annealing, to 

find a proper solution. 

From their experiment they concluded that GA preforms as good as, or even better than 

simulated annealing. Figure 2-15 shows the result of the carried out experiment, it shows 

that in 2 circuits GA was able to find a smaller (better) cutsize than the commonly used 

simulated annealing. 

 

 

Figure 2-15: Comparison of mean cutsizes (Manikas & Cain, 1996) 
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2.5 Feature selection with GAs 

“Genetic Algorithms (GAs), have been developed for solving feature selection problems due 

to their efficiency for searching feature sub-set spaces in feature selection problems”(Jeong et 

al., 2014). GAs are widely used in Feature Selection (Tsai et al., 2013). A lot of research has 

been done on the combination of GA with feature selection techniques and has been proven 

successful. In this section we discuss some of these works. 

2.5.1 Work that utilizes GA with feature selection.  

(Santana et al., 2010), (Oreski & Oreski, 2014) (Liang et al., 2014) experimented with filters, 

while (Sun et al., 2004) (Dezhen & Kai, 2008) (Chouaib et al., 2008) (R. Li, Lu, Zhang, & 

Zhao, 2010) (Harb & Desuky, 2011) (Jeong et al., 2014) (Oreski & Oreski, 2014) (Lee & 

Lee, 2014) (Liang et al., 2014) (Vignolo et al., 2013) used wrapper methods with GAs. 

(Vignolo et al., 2013) and (R. Li et al., 2010) used K-Nearest Neighbor as the black box 

classifier  in the wrapper method. While (Chouaib et al., 2008), (Dezhen & Kai, 2008) , (R. 

Li et al., 2010), and (Harb & Desuky, 2011) used Adaboost as their classifier. SVMs have 

been used as classifiers in (Sun et al., 2004), (Lee & Lee, 2014), and (Liang et al., 2014). 

(Oreski & Oreski, 2014) and (Jeong et al., 2014) used Neural Networks as their classifier. 

The following discusses some research that use both GA and feature selection to solve 

different types of problems. 

2.5.1.1.1 Comparing GA with other metaheuristic method in Feature selection 

Sun et al. (Sun et al., 2004) used the powerful methods of GAs to select the best 

eigenvectors. They compared the use of GA with SBFS in Feature Selection. The SBFS is 

based on the 2 heuristic methods, which are the sequential forward selection (SFS) and 

sequential backward selection (SBS) methods. The GA results have been proven to improve 

detection results.  

(Yusta, 2009) compared metaheuristic techniques including GA and SFBS along with other 

popular algorithms such as GRASP and Tabu search. 

(Santana et al., 2010) Compared the use of GA with ACO in feature selection for building an 

ensemble of classifiers. They concluded that when using small ensembles (small number of 

individual classifiers), the best option is ACO, while for larger ones GA performed better. 
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2.5.1.1.2 Genetic Algorithm in feature selection with Adaboost 

Chouaib et al (Chouaib et al., 2008) aimed to find the set of the most representative features 

using GAs, in order to decrease the detection time in hand-written digit recognition. Their 

results showed that for the majority of descriptors their feature set was significantly reduced 

up to 35% of the original set in multi-class problems. 

Dezhen et al. (Dezhen & Kai, 2008) provided a post optimization technique to avoid the 

redundancy of classifiers. By doing so, they managed to increase the speed of classification by 

110% due to reducing the number of features to 55% of the original set. 

(R. Li et al., 2010) proposed the use of dynamic Adaboost with feature selection based on 

parallel GA, in image annotation, yet the Adaboost ensemble had better accuracy than the 

algorithm that included feature selection with GA. 

(Harb & Desuky, 2011) used Adaboost ensemble with a post optimization process for feature 

selection using GA and applied it to intrusion detection. They concluded that their method 

effectively improved the results of the boosted classifier providing, better accuracy with fewer 

weak classifiers 

2.5.1.2  Use of GA in feature selection in miscellaneous applications 

(Chaaraoui & Flórez-Revuelta, 2013) proposed a human action recognition 

optimization using evolutionary feature sub-set selection and claimed to have achieved 

promising results, as they achieved perfect detection on their test dataset with a reduced feature 

sent by approximately 47% on average. 

(Oreski & Oreski, 2014) used Genetic Algorithm in feature in credit risk assessment, and 

proved that their technique provided promising results and that their classifier is a promising 

addition to existing data mining techniques. 

 (Lee & Lee, 2014) experimented with the same techniques in the problem of predicting 

heavy rain fall from big weather data, their experiment proved that their proposed approach 

had a similar accuracy when compared to original algorithm. Yet computation time was 

reduced 8 times due to the dimensionality reduction of the data. 

(Liang et al., 2014) used several wrapper methods and included Particle Swarm Optimization 

PSO and GA and Filter methods like linear discriminant analysis (LDA), t-test, logistic 

regression (LR). They concluded that although it’s hard to choose the best feature selection 

method for financial distress, the better wrapper method is the GA. 
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(Vignolo et al., 2013) investigated the use of feature selection with GA in face recognition 

and proved that their proposed approach enhanced the detection performance while reducing 

the representation dimensionality. 

 

2.6 Summary 

This chapter provided background on the basic areas used in this thesis. Viola-Jones 

Rapid Object detector, and some enhancements on it have been discussed. Feature selection, 

its categories and importance is provided. An overview on Genetic Algorithm is given. Finally 

research using both GAs in feature section is examined.  

Since the last section has proved the effectiveness of combing GA in Feature Selection with 

various problems and since the previous work was concerned with enhancing the accuracy or 

speed of detection regardless of the overhead posed on the training time. This work aims to 

examine the effects on increasing the speed of training using GAs in feature selection and how 

this might affect the accuracy in the Viola Jones Rapid Object Detector, with its cascaded 

classifier structure. 
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CHAPTER (3): PROPOSED APPROACH 

The outcome of the proposed methodology is building a cascade classifier that is 

efficient and does not require too much time to train, without a significant effect on the 

detection accuracy. The sections of this chapter describe the methodology of building such 

classifiers, how to implement them and the tools used for achieving the required goal, since the 

basis of this methodology is to incorporate GAs in the training process of the Classifiers, the 

details of the GA used are to be discussed. Also, the training and testing details are discussed. 

3.1 OpenCV 

In order to integrate the use of GA, Open Source Computer Vision Library 

(OpenCV)(Itseez, 2015)  was used. OpenCV is an open-source BSD-licensed library that 

includes several hundreds of computer vision algorithms (“The OpenCV Reference Manual,” 

2014) . OpenCV contains the implementation of the Viola-Jones cascade classifier in the form 

of 2 applications: Opencv_haartraining, and Opencv_traincascade. Table 3-1 provides a brief 

summary of both applications. 

3.1.1.1 Opencv_haartraining  

Opencv_haartraining supports only Haar features. The drawback of this 

application is that it has become obsolete and has been removed from newer versions 

of OpenCV. 

3.1.1.2 Opencv_traincascade 

Opencv_traincascade is the newer version of training a cascade classifier in 

OpenCV. This application supports Local Binary Patterns (LBP), Histogram of 

Oriented Gradients (HOG) along with Haar features. Opencv_traincascade also 

supports the use of Threading Building Blocks (TBB) for multi-threading in a multi-

core environment. 

Both of these applications store the trained classifier with different file formats. 

Opencv_traincascade is able to store the resultant classifier in the old format, yet none of the 

applications can load the other’s format to continue the training if the training was interrupted 

at any point. 
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Table 3-1 Comparison of OpenCV Application used to train a cascade classifier. 

 Opencv_haartraining Opencv_traincascade 

Difference Older version of cascade classifier 

implementation. 

Newer version of cascade classifier implementation. 

Advantages  Less code, easier to manipulate, and add 

functions to. 

 Supports LBP in addition to Haar. 

 Supported in newer versions of OpenCV. 

 Supports multi-threading 

 Saves the saved classifier in both old and new 

formats 

Disadvantages  Obsolete (not supported in newer 

OpenCV versions. 

 Only saves and loads the old version of 

template for saving the classifier. 

 Only loads the old version of template for saving 

the classifier. 

 Lots of modules in the code, not well documented, 

thus harder to manipulate and add functions to. 

 

 

As shown, Opencv_traincascade surpasses Opencv_haartraining in the advantages, thus 

opencv_traincacade was chosen to be modified by adding necessary functions, in order to 

implement the proposed idea. 

 

3.2 GAdaboost Overview 

The proposed method (Named: GAdaBoost) applies GA to select a set of features, to 

have Adaboost choose from, instead of going through the set of all possible features. The 

original Adaboost algorithm was proposed by Freund and Schapire (1995) the generalized 

version works as follows: For the training of each stage in the stage classifier, the algorithm 

passes through the set of all possible features and calculates the error of each feature on each 

given image. After that, it chooses the best feature (the one with the lowest error, i.e best 

classifies the image correctly) as the first weak classifier. It then updates the sample images 

and their corresponding weights, by putting more weights on the wrongly classified images. 

The procedure is repeated until the set of chosen features reaches a preset false alarm and hit 

rate set for classification.  
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Incorporating the use of GA will increase the training speed by avoiding the error 

calculation of the set of all possible features and only providing the Adaboost algorithm with a 

representative set of features, that have been chosen based on their classification power.  This 

set of representative candidate features is to be prepared by the GA before the training of each 

stage in the final classifier. For example if the final classifier is to have 10 stages the added GA 

technique is to be repeated 10 times. The stage training utilizes Adaboost technique to choose 

multiple weak classifiers from the mentioned representative set, in order to reach the desired 

false alarm and hit rate preset for the stage. Figure 3-1 shows a block diagram that explains the 

proposed GAdaBoost technique.  

 

 

Figure 3-1 GAdaboost algorithm flowchart 
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On the first iteration the GAdaboost chooses a preset number of features randomly to 

create the first generation of the given population size. Those randomly chosen features are 

marked so that they are not to be used again when more random features are to be generated. 

This is done to explore more of the set of all possible features. In order to assess the predictive 

power of these features, they are passed to a learning algorithm. The way this has been 

implemented is by creating a temporary (dummy) stage where the features are trained in the 

same way the original stage training works, i.e the dummy stage is an Adaboost training 

algorithm. The number of weak classifiers chosen by the Adaboost algorithm in the dummy 

stage is a variable that is preset. The Adaboost algorithm associates the features with scores 

that are a representation of their predictive power (how well they are able to correctly classify 

images). After that the best features are then selected and have mutation and crossover 

processes preformed on them to get the next generation of an even better performing set of 

features. The new generation is then passed by a dummy stage for scoring. The process is 

repeated until the average fitness of the population saturates or a predefined number of 

iterations are reached. 

As a form of exploring more of the set of all possible features, for each iteration with 

an even number (2nd, 4th, etc. generations) that is greater than zero, the best set of parents and 

their children produced are chosen. Then a spatial comparison is formed to remove the 

redundant features and random features are inserted instead to complete the population size. 

The spatial comparison is done using the pasacal criterion where two features are considered 

of spatial similarity if the ratio of the intersection of the two features over the union of the two 

is greater than 0.4. This method is described in more detail in section 4.2.3.2. The use of only 

even iterations entails that the spatial comparison is done on half the number of iterations (eg. 

for 50 iterations, the spatial comparison is done 25 times). The final set of features obtained by 

the GA is passed through a real stage where the weak classifiers selected by this stage are to 

be used in the resultant final classifier. The afore-mentioned technique ensures that the 

Adaboost algorithm will only evaluate the population size chosen instead of going through the 

whole set of features when selecting the weak classifiers of the resultant final stage classifier.  

The following is the pseudo code of the GAdaboost algorithm. 
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Algorithm GAdaboost 

  

For each stage: 

populationArray = selectRandomFetures(popSize) 

fitnessValues = Adaboost(populationArray,noWeakClassifiers) 

do 

         if (evenIteration and iteration !=0) 

                   newGeneration= GetFittestIndivisuals(previous2Generations) 

                    newGeneration = specialCompare(newGeneration) 

                    if (newGneration.size<popSize) 

                             fillPopluation(newGeneration, selectRandFeatures()) 

                     end if 

 

              else if 

tournamantPlayers = selectBestParents(populationArray, fitnessValues) 

newGeneration = crossover(tournamantPlayers) 

newGenration = Mutate(newGeneration) 

          end if 

fitnessValues = Adaboost(newGenration,noWeakClassifiers) 

While (! converged and !presetItertionNo) 

reducedfeatureSpace= newGeneration; 

TrainStage(reducedfeatureSpace); 

end For  
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3.3 GA Details 

3.3.1 Initial population 

In the first GA generation a random set of features out of the whole search space is 

chosen, each feature is then mapped to a chromosome and added to the population. The 

individual chromosome in this case is just the representation of one feature. It represents here 

one feature which is one weak classifier, which can be considered the complete solution for 

each iteration. In other words, the complete solution in this case is just one weak classifier 

(feature) for each iteration. Figure 3-2 illustrates how the population is represented in the 

proposed method. 

 

Figure 3-2 Population illustration 

3.3.2 Chromosome Representation 

Each chromosome represents one Haar feature. The chromosome is of an integer 

representation. The values of the chromosome are x, y, x1, y1, type, where x, y are the integer 

values of  the upper left co-ordinates of the feature rectangle and x1, y1 are the integer values 

of the lower right corner of the feature rectangle. The type is an integer value from 0-4 where 

each number represents one of the Haar feature types used for upright frontal faces detection. 

0, 1, 2, 3, 4 represent the Haar types of haar_x2, haar_y2, haar_x3, haar_y3 and haar_x2y2 

respectively. Figure 3-2 explains the mapping of a feature of type haar_x2 to a chromosome in 

a given image. As shown, the chromosome carries decoded information about the type of the 

feature and its orientation in a given image, the way the chromosome is represented facilitates 

the mutation and the crossover processes which provide new features.  
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Figure 3-3 Chromosome to feature mapping 

3.3.3 Fitness Function 

The fitness function is a measure of how well this features splits between the negative 

and the positive images or in other words predictive power of this feature in classifying the 

images correctly. The OpenCV implementation uses decision stumps as weak classifiers, these 

decision stumps are Classification and Regression trees (CART). In CART the regression tree’s 

best split quality is calculated by the minimization of Equation 3.1.  

 

∑ (TRi − PRi)
2𝑛

𝑖=0            (3.1)  

 

Where TR is the ground truth of the image, PR is the predicted response by the decision 

stump and n is the number of sample images. Yet, for simplicity the OpenCV traincascade 

developer mentioned that in implementation the minimization criteria is reduced to equivalent 

simpler maximization ones (Dimashova, 2012). In conclusion, the fitness of the feature used is 

the split quality measure provided by OpenCV’s CVDTree class. Thus, in the implementation 

the best feature is the one the largest quality. 
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3.3.4 Selection Mechanism 

The selection mechanism used in GAdaboost is the Roulette Wheel selection method. 

After each individual in the population is associated with a fitness function, the roulette wheel 

selects pairs from the population. Each pair chosen will undergo a crossover mechanism to 

produce child chromosome to participate in the next generation. This selection mechanism 

ensures that the individuals with higher fitness will have a higher probability of contributing to 

the next generation, since the probability of an individual of being chosen is directly 

proportional to its fitness. In other words, the larger the fitness value of the chromosome the 

larger its segment on the roulette wheel is, the higher the probability of its selection becomes. 

3.3.5 Crossover 

A simple one-point crossover has been used, in order to combine the genes of the 2 

parents that are chosen according to their fitness by the selection mechanism to participate in 

the next generation. The one-point crossover allows the exploration of the search space by 

choosing one point then cutting the chromosomes at this point and exchanging the parts of the 

chromosome after the cut. This type of crossover has been chosen as it best fits the chromosome 

representation applied in GAdaboost. Since the chromosome is short and consists of the upper 

left corner, lower left corner and the type of the rectangular feature, the cut point has been 

chosen to be at the lower right corner of the two candidate features. Figure 3-4 illustrates the 

crossover done by the GAdaboost technique.  

 In order to ensure the validity of the produced children, some checks are preformed. 

Each child chromosome coordinates (coordinates of the feature it represents) are checked. If 

the produced chromosome is unvaild, for example, its lower right horizontal coordinate (x1) is 

smaller then its upper left horizontal coordinate (x), the choromose is fixed by exchanging the 

2 values. The same process is done for the vertical cooridinates of the produced child. Similariy, 

if the horizontal coordinates, or the vertical cordinates of the upper left corner and lower right 

corner of the feature the chromosome represnts are equal they are fixed. All the alterations to 

build a valid choromosme are done in accordance to the width and height of the images. 
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Figure 3-4 GAdaboost crossover illustration 

3.3.6 Mutation 

The type of the feature is highly dependent on its width and height In order to reduce 

the time taken by validation of the correctness of the feature, the mutation is designed to assign 

the type to the feature according to how suitable this type is, given the co-ordinates of this 

feature. So for each produced child chromosome when check if the width is divisible by two 

then its assigned a haar_x2 type, if not we check if it is divisible by three and if it is then it is 

assigned a type of haar_x3, and so on. 
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CHAPTER (4) EXPERIMENTS 

In this chapter the experiments done on the proposed method are discussed. In order to test a 

classifier 2 main processes are involved. These processes are: Training and testing. The first 2 

sections describe these procedures and provides information that is beneficial for the 

experiments. Then we start our experiments by building a baseline, which is the normal rapid 

object detector proposed by Viola-Jones, without any additions of feature selection methods or 

GA. The second experiment examines the fitness values of the best individuals and the average 

fitness of the population through the generations of the Genetic Algorithm. The effect of 

varying the population size on the training time is observed in the third experiment. The fourth 

experiment builds a classifier with 20 iterations for the GA per stage and tests the accuracy of 

both the Caltech Web Faces and the FDDB datasets. The final experiment compares the 

baseline performances versus the performances of the 2 variations of GAdaboost with respect 

to time and accuracy. All the training occurred on the same computer with an Intel Core i7-

4510U @ 2.00GHz processor and 8 GB RAM. 

4.1 Training 

Principally GAadaboost is concerned with training the cascade classifier faster with 

minimal loss of accuracy in the detection process of the resultant classifier. Training is the 

process where the application is given positive images, which are images that contain the 

desired object. The positive images are annotated. i.e the places where the desired object lies 

in these images is given. The training must also be given a set of negative images, which are 

images that do not contain the desired object. The training must be given a stopping criteria, in 

order to stop training when these results are reached on the validation set. 

4.1.1 Positive images 

The positive images used to train the detectors are acquired from the trainingfaces_24-

24 .vec file provided with OpenCV. This file encompasses information about 1000 images 

containing upright frontal faces. A sample of these positive training images is shown in Figure 

4-1. 
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Figure 4-1 Positive training images 

4.1.2 Negative images 

The negative images were picked randomly from the dataset of 101 objects developed 

at Caltech (Fei-Fei, Fergus, & Perona, 2004). Figure 4-2 provides a sample of the negative 

images used. 

 

Figure 4-2 Negative images samples 

4.1.3 Training Parameters. 

To train a cascade classifier using Opencv_traincascade, some parameters values have 

to be set, such as the number of positive images and number of negative images per stage, the 

number of stages the final classifier will have, the type of features used and the hit and false 
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alarm rates per stage. Figure 4-3 provides a screenshot of the required parameters by the 

opencv_traincascade application. 

 

Figure 4-3 Opencv_traincascade parameters 
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4.1.4 Resultant trained classifier 

After the training finishes the resultant classifier is stored as an xml file. The xml file 

represents the stages, the nodes (features) to be applied on the testing images per stage, and the 

threshold per each stage. Figure 4-4 shows snapshots of the saved classifier. 

 

Figure 4-4 Resultant cascade classifier 
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As shown from Figure 4-4 the classifier is saved as an xml file containing information 

about the parameters on which this classifier has been trained on, like the feature type and the 

width and height of the training images, etc. It also contains the stages, their internal nodes and 

the feature rectangles at the end of the xml file. 

A stage is represented as follows (Figure 4-5) 

 

Figure 4-5 Example of a stored stage of resultant classifier 

The values of the internal node are, node.left node.right feature index (features are written as 

rectangles at the end of the xml file as shown from Figure 4-4) and the node threshold. 

 

4.2 Testing 

In order to test the performance of the trained classifier, three processes take place: 

Collecting test images, using OpenCV’s detection function, then matching the detected 

rectangles to the ground truth of the test images. 

4.2.1 Datasets 

Face detection datasets were chosen since Haar features were used originally to detect 

upright frontal faces. The Face Detection Dataset and Caltech Web Faces are the datasets used  

For testing the built classifiers. 

4.2.1.1  The Face Detection Dataset 

The Face Detection Dataset (FDDB)(Jain & Learned-Miller, 2010) is a benchmark 

dataset designed for studying the unconstrained face detection problem. This dataset has been 

used in many studies and is considered one of the difficult datasets, due to occlusions, out of 

focus faces and difficult poses (Jain & Learned-Miller, 2010).This dataset contains annotations 

for 5171 faces in a set of 2845 images. The faces are annotated in the form of ellipses, and their 

major and minor axes as shown in Figure 4-6.  
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Figure 4-6 Example of annotated FDDB dataset(Jain & Learned-Miller, 2010). 

 

4.2.1.2 Caltech 

Caltech Web Faces is a dataset of human faces collected from the web (Angelova, Abu-

Mostafa, & Perona, 2005) It is a challenging dataset since it contains difficult examples such 

as; extreme face orientations, occlusion like hats and glasses and variable light conditions 

(Angelova et al., 2005). The Caltech Web Faces data set consists of 10,524 annotated faces. 

This dataset provides the images along with text files containing the co-ordinates of the mouth, 

eyes and nose for each face in the image. In order to overcome the extreme face orientation 

problem, the images were processed and faces where the difference between the y-coordinates 

of the left and the right eyes are more than 20 percent of the face width, are disregarded. This 

removed approximately 1,000 images of the Caltech dataset. 

4.2.2 Detection with OpenCV. 

Using the built classifier to detect faces can be achieved by using openCv’s detectMultiScale 

function. It works by loading the xml file of the built stage classifier, then it provides the 

detected rectangles of the faces on the test images.  

 In order to calculate a score for each detected rectangle, the information about the stage at 

which the outputted rectangle has been rejected is required, thus a variation of the 

detectMultiScale function of OpenCV. The header of the former function is as follows: 

detectMultiScale(Mat image, MatOfRect objects, MatOfInt rejectLevels, MatOfDouble 

levelWeights, double scaleFactor, int minNeighbors, int flags, Size minSize, Size maxSize, 

boolean outputRejectLevels) 
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However, this overloaded method of the detectMultiScale function has a bug in opencv 3.1 

and has been reported to work in earlier opencv versions especially OpenCV 2.4. Hence, to 

use this function, OpenCV 2.4.9 was used for detection. 

 

4.2.3 Evaluation Tools 

After the trained classifier is used to detect faces, the acquired results have to be 

validated against the image annotation in order to acquire the accuracy of detection. The 

evaluation has been done with different tools for each of the 2 datasets chosen for testing.  

4.2.3.1 FDDB Evaluation Tool 

The FDDB developers provide their tool for evaluation(Jain & Learned-Miller, 2010). 

The software can be downloaded from their website along with some gnuplot scripts to draw 

the Receiver Operator Curves (ROC) of previous published papers using their dataset as a 

benchmark. Their tool is fairly simple to use, the detection file has to be fed to the tool in the 

following format: 

<image name i> 

<number of faces in this image =im> 

<face i1> 

<face i2> 

... 

<face im> 

 

 

Where each face is represented as follows: 
 Rectangular regions: 

        

       <left_x top_y width height detection_score>  

OR, 

 
   

  Elliptical regions 

       <major_axis_radius minor_axis_radius angle center_x center_y 

detection_score>. 

 

 

Also the image ordering in the detection file is expected to be the same as the annotated file. 

In this work, the Rectangular representation was used in the detected file. The detection score 

is computed using the following Equation 4.1 as mentioned by the FDDB authors: 

 

𝐾 ∗ 𝑟𝑒𝑗𝑒𝑐𝑡𝑖𝑜𝑛𝑆𝑡𝑎𝑔𝑒 + 𝑆𝑡𝑎𝑔𝑒𝑆𝑢𝑚𝑜𝑓𝑅𝑒𝑗𝑒𝑐𝑡𝑖𝑜𝑛𝑆𝑡𝑎𝑔𝑒         (4.1)     
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Where K is a large number in order to ensure that the window rejected by stage i will have a 

much higher score than the one rejected by stage i-1.Both the rejectionStage and the 

stageSumofRejectedStage can be computed by using the rejectLevels and the levelWeights 

obtained from the variation of the detectMultiScale function of OpenCV. 

 

4.2.3.2 Caltech Webfaces Evaluation Tool 

Caltech Webfaces dataset has no evaluation tool thus we built a tool to match the 

detected faces with the ground truth of the annotated file. This has been achieved through the 

following steps: 

1. Building a tool to convert the given annotation which are the co-ordinates of the 

mouth, eyes and nose for each face into rectangular regions by assuming that 

the face width equals double the distance between the 2 eyes. We also assume 

that the width of the face equals the height of the face. 

2. Building another tool that reads both the ground truth rectangles provided by 

the previous tool and the detected faces from our cascade classifier and 

matching them to acquire the classifier’s accuracy. 

 For matching, we use the pascal criteria shown in Equation 4.2 (Everingham, Gool, Williams, 

& Winn, 2010) 

𝑎𝑟𝑒𝑎(𝐵𝑔𝑡 ∩ 𝐵𝑑𝑒𝑡)

𝑎𝑟𝑒𝑎(𝐵𝑔𝑡 ∪ 𝐵det )
> 0.4       (4.2) 

 

Where 𝐵𝑔𝑡 is the ground truth bounding box and 𝐵𝑑𝑒𝑡 is the detected bounding box. Thus the 

ratio of the area of intersection between the two boxes to the area of their union has to exceed 

0.4 in order for the detected box to be counted as a face. 

We followed the same template for the detection file and the annotated file used in the FDDB 

evaluation tool. Also the detection score has been computed the same way it has been computed 

for the FDDB. 
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4.3 Individual and Population fitness 

4.3.1 Objective 

In this experiment we observe the progression of the best individual fitness, and the 

average fitness of the population per generation. 

4.3.2 Method 

In this Experiment a 17 stage cascade classifier has been trained with 500 positive images, and 

500 negative images, and a hit rate of 0.995, and a false alarm rate of 0.5 per stage. The 

GAdaBoost discussed in the proposed method (section 3) has been used to train this cascade 

classifier. A population size of a 1000 and 50 iterations are the parameters set for the 

GAdaBoost. Each dummy stage has been trained for only one weak classifier, with no carrying 

on of the image weights between dummy stages. In addition the check on the special proximity 

and its removal wasn’t utilized.  

4.3.3 Results 

Figure 4-7 shows the progress of the best individual, and the average fitness of the 

population. They are shown over the course of 50 iterations of the GA performed before the 

17th stage. 

 

Figure 4-7 Best individual fitness and average population fitness over 50 iterations 

4.3.4 Discussion 

The best individual fitness either increases or stays constant, this can be attributed to 

elitism, since in our algorithm the best few features survive and are passed on to the next 

generation. i.e. not all the individuals of the parent population are replaced by the produced 

children. 
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As for the average population fitness, it follows the expected behavior observed in 

genetic algorithm. The fitness begins to increase significantly then starts to saturate as a 

maxima is reached. 

4.4 Population Size versus Training Time 

4.4.1 Objective 

In this experiment we emphasize the effect of varying the population size of the GA on 

the time taken by GAdaboost in training the cascade classifier. 

4.4.2 Method 

In this experiment a 17 stage cascade classifier is trained 3 times, each with a different 

population sizes while keeping the other training parameters constant. The constant parameters 

are: 500 positive images and 500 negative images, a hit rate of 0.995 and a false alarm rate of 

0.5 per stage. Each dummy stage is trained for 3 weak classifiers and the sample image weights 

are carried on between the dummy stages, 20 iterations are set for GAdaboost. Each classifier 

has been trained multiple times and the average time taken by each have been calculated. 

4.4.3 Results 

As can be observed from Figure 4-8 as the population size increase the time required to 

train the cascade classifier increases. 

 

Figure 4-8 Population size vs training time. 
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4.4.4 Discussion 

The expected increase of the training time when increasing the population size can be 

attributed to two factors: The first one is that the less the population size, the less mutations 

and crossover processes take place. Consequently, less checking on feature validity will be 

made, which will eventually save time. The second factor is that the GA provides the Adaboost 

with a smaller feature set to go through in a brute force manner, which is less time consuming. 

4.5 Baseline 

4.5.1 Objective 

The objective of this experiment is to have a baseline to compare our method with. Our 

aim is to examine how a cascade classifier without any modification performs on the chosen 

datasets of faces. The observation of the performances focuses on the accuracy of the detected 

results, and the time taken to train this classifier. 

4.5.2 Method 

Opencv_traincascade application has been used to train a cascades classifier, without 

any modification in the code. The classifier is trained to have 17 stages. The parameters for 

training are: 500 positive images and 500 negative images per stage. The selected features are 

of type Haar basic features. A hit rate of 0.995 and a false alarm rate of 0.5 have been chosen 

per stage. The rest of the parameters are left with the default values. 

The obtained classifier has been used to detect faces in 290 images found in the first 

fold of the FDDB images, and 500 images from the Caltech Webfaces dataset. Then the 

detected faces are passed to the evaluation applications, to assess their correctness of detecting 

a face, and observe the accuracy of the trained classifier. 

4.5.3 Results 

The classifier has finished training in 67 minutes. The detection power has been 

evaluated and the results are used to draw a Receiver operator curve (ROC) to provide a 

visualization of how well the baseline classifier performs on the two chosen datasets. Figure 

4-9 shows examples of detection on images. Both Figure 4-10 and Figure 4-11 show the 

performance of the baseline classifier in detecting faces in both FDDB and Caltech Webfaces 

respectively. 
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Figure 4-9 Examples of detection of baseline on images 

 

Figure 4-10: Baseline performance on FDDB dataset 
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Figure 4-11: Baseline performance on the Caltech dataset 

 

4.5.4 Discussion 

As shown in from both figures, at 500 false positives, the baseline true positive rate is 

64% and at 1000 false positives the baseline achieved 67% true positive rate on the FDDB 

dataset. 

While on the Caltech Webfaces dataset the baseline at 500 false positives, the baseline true 

positive rate is 46 % and at 1000 false positives the baseline achieved 51%. These low 

percentages can be attributed to the fact that the basic types of Haar features perform well in 

detecting upright frontal faces, while both datasets are hard benchmarks since they contain 

images with severe face rotations, occlusion and light variations. One possible enhancement 

would have been to increase the number of positive and negative images used for training, or 

set a larger value for the number of stages (greater than 17) while training the cascaded 

classifier.  

4.6 GAdaboost 20 iterations 

4.6.1 Objective 

The objective of this experiment is to test the results of the GAdaboost. In summary, 

GAdboost is implemented by injecting a feature selection mechanism using GA into the 

original training mechanism of the cascade classifier. By conducting this experiment we 

observe the effects of adding GA with 20 iterations to the original Viola-Jones Rapid Object 
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Detector on the training time and accuracy of detection on both FDDB and the Caltech 

Webfaces dataset. 

4.6.2 Method 

A 17 stage classifier using the GAdaboost method has been trained with the following 

parameters: 500 positive images and 500 negative images per stage, the selected features are 

of type Haar basic features, a hit rate of 0.995 and a false alarm rate of 0.5 were chosen per 

stage. The rest of the parameters are left with the default values. Each stage is trained for 3 

weak classifiers, and the maximum number of iterations for the GA is 20 iterations and a 

population size of a 1,000. 

The training process has been repeated several times, each time a classifier is obtained. 

After the training process of the classifier is finished, we acquire each saved final classifier and 

tested its performance on the FDDB and Caltech Webfaces datasets. The results are presented 

in the following section. 

4.6.3 Results 

4.6.3.1 Training time 

Since the training process was repeated many times, the training times have been recorded and 

averaged. Table 4-1 shows the timings of each run and their average. 

 

Table 4-1 Training time for each run of training GAdaboost 20 

Run  Number Time in Minutes 

1 17 

2 17 

3 18 

4 21 

5 16 

6 17 

7 18 

8 16 

9 18 

10 22 

Average 18 
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4.6.3.2 Results on the Two Datasets 

Each classifier obtained from the multiple training runs is tested. Figure 4-12 shows 

examples of detections on images, While Figure 4-13 and Figure 4-14, show the ROC curves 

of the results on both the FDDB and the Caltech Webfaces respectively. 

 

Figure 4-12: Examples of detection of Gadaboost20 on images 
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Figure 4-13: ROC curve of multiple GAdaboost20 Classifiers on FDDB 

 

Figure 4-14: ROC curve of multiple GAdaboost20 Classifiers on Caltech 

4.6.4 Discussion 

As shown from Table 4-1 Training time for each run of training GAdaboost 20 the 

training time of each run varies slightly from the other with their average being 18 minutes, 

and the lowest value is 16 minutes and the highest is 22 minutes. The slight variation in the 

training time can be attributed to the randomness factor that is a part of the GA’s nature. In 

order words, the randomly chosen initial population differ multiple times in each run which 

might provide better features on some runs over the others, worse features in general will also 
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require more time in the Adaboost training of each stage in order to reach the specified hit and 

false alarm rate set for each stage. In addition, non-representative features may take more time 

to converge thus having more mutations and crossovers done on them than fitter (more 

representable features), consequently consuming more time. The variation of time may also be 

attributed to an implementation detail done in GAdboost, which is the marking of used features, 

this technique has been deployed in order to explore more of the search space, yet its drawback 

is that it might require more time to search for an unseen feature while randomly choosing 

features from the original search space. 

Concerning the detection accuracy, from both Figure 4-13 and Figure 4-14 it can be 

shown that the behavior of the runs are similar in both FDDB and Caltech Webfaces dataset. 

Though the performance of the runs vary, most of them perform well with the exception of 

some of the runs which perform slightly worse. It can also be noted that at lower thresholds the 

performances of the runs become more similar (the results become closer to each other). The 

difference in performances of the runs can also be attributed to the randomness factor of the 

GA. Where each run may discover a different area of the search space. Not only this, but also 

the randomness happens before each stage in each run, and while injecting some random 

features after removing the especially similar features. Another factor may be that the 

population size was 1000 chromosomes (features) which is a small portion of the whole search 

space that consists of more than 160,000 features in this case. 

 

4.7 GAdaboost 50 iteration 

4.7.1 Objective 

The objective of this experiment is to test the results of yet another variation of the 

GAdaboost. By conducting this experiment we observe the effects of adding GA with 50 

iterations to the original Viola-Jones Rapid Object Detector on the training time and accuracy 

of detection on both FDDB and the Caltech Webfaces datasets. 

4.7.2 Method 

A 17 stage classifier using the GAdaboost method has been trained with the following 

parameters: The parameters for training are: 500 positive images and 500 negative images per 

stage. The selected features are of type Haar basic features. A hit rate of 0.995 and a false alarm 

rate of 0.5 have been chosen per stage. The rest of the parameters are left with the default 
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values. The parameters of the Genetic algorithm are: Each stage is trained for 3 weak 

classifiers, and the maximum number of iterations for the GA is 50, and a population size of a 

10,000. 

The training process has been repeated several times, each time a classifier is obtained. 

After the training process of the classifier is finished, we acquire each saved final classifier and 

tested its performance on the FDDB and Caltech Webfaces datasets. The results are presented 

in the following section. 

4.7.3 Results 

4.7.3.1 Training time 

Since the training process was repeated many times, the training times have been recorded and 

averaged. Table 4-2 shows the timings of each run and their average. 

Table 4-2 Training time for each run of training GAdaboost 50 

Run  Number Time in Minutes 

1 30 

2 32 

3 27 

4 33 

5 38 

6 27 

7 29 

8 26 

9 28 

10 28 

Average 29.8 

 

4.7.3.2 Results on the Two Datasets 

Each classifier obtained from the multiple training runs is tested. Figure 4-15 shows 

examples of detections on images, while Figure 4-16 and Figure 4-17, show the ROC curves 

of the results on both the FDDB and the Caltech Webfaces respectively. 
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Figure 4-15: Example of detections of GAdaboost50 

 

Figure 4-16: ROC curve of multiple GAdaboost50 Classifiers on FDDB 
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Figure 4-17 ROC curve of multiple GAdaboost50 Classifiers on Caltech 

4.7.4 Discussion 

As shown from Table 4-1 Training time for each run of training GAdaboost 20 the 

training time of each run varies slightly from the other with their average being 30 minutes, 

and the lowest value is 26 minutes and the highest is 38. The GAdaboost with 50 iterations 

exhibits the same behavior of the GAdaboost with 20 iterations (shown in the previous 

experiment: Section 4.6). The randomness in the GA nature is deemed responsible for the slight 

variation in time difference between the runs. The randomness affects the initial quality of 

features, meaning that the first population may have been better in some runs than the others. 

This also means that the explored part of the search space differs between the runs. The quality 

of explored features can be held accountable for the difference in the time taken by the 

Adaboost for training. As the case with GAdaboost 20 iterations, the variation of time can also 

be due to the marking of used features. This entails that more time will be consumed while 

searching for an unseen feature, to be selected from the original search space. 

Concerning the detection accuracy, GAdaboost 50 showed similar behavior as 

GAdaboost 20. From both Figure 4-16 and Figure 4-17 it can be shown that the behavior of the 

runs are similar in both FDDB and Caltech Webfaces dataset. The performance of the runs 

vary, yet only a smaller portion of the runs perform worse than the rest. In other words, most 

of the runs perform well. It can also be noted that the results of the runs at lower thresholds are 
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closer to each other. The difference in performances of the runs can also be attributed to the 

randomness factor of the GA which denotes that each run may discover a different area of the 

search space according to the random seed. In GAdaboost, the randomness also happens before 

each stage in each run, and also while injecting some random features after removing the 

spatially similar features, which was meant to avoid redundancy. The population size of a 1000, 

which is a small sub-set of the 160,000 feature search space, might have also contributed to the 

reason that some of the runs perform poorly along with the random seed dependency.  

4.8 Training speed versus Accuracy 

4.8.1 Objective 

In this sub-section, the objective is to have an overview of the performance of the 

variations of the proposed method versus the baseline, which is the original Viola-Jones 

cascade classifier. In order to achieve the former goal, the results obtained from 3 previous 

experiments are compared. The three experiments are: The baseline, GAdaboost with 20 

iterations and GAdaboost with 50 iterations. The performance of the 3 classifiers are obtained 

and ROC on both FDDB and Caltech Webfaces datasets are drawn and compared. In addition 

the time variation in training the 3 classifiers is compared and visually emphasized on a graph. 

4.8.2 Results 

4.8.2.1 Time Comparison Graph 

Figure 4-18 plots the time taken to train each of the 3 experiments: The baseline, 

GAdaboost with 50 iterations and GAdaboost with 20 iterations. 
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Figure 4-18 Training time in minutes of each of the experiments. 

4.8.2.2 Accuracy on FDDB and Caltech Webfaces Datasets 

Figure 4-19 and Figure 4-20 provide the baseline results versus the Y error bars, 

showing the maximum, minimum and average results, for all the runs of both the 20 and the 

50 iterations GAdaBoost on FDDB dataset 

 

Figure 4-19 Y error bars for all the runs of the 20 iterations GAdaBoost on FDDB. 
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Figure 4-20: Y error bars for all the runs of the 50 iterations GAdaBoost on FDDB 

Figure 4-21 and Figure 4-22 provide the baseline results versus the Y error bar graphs, 

showing the maximum, minimum and average results, for all the runs of both the 20 and the 

50 iterations GAdaBoost on Caltech Webfaces dataset. 

 

 

Figure 4-21: Y error bars for all the runs of the 20 iterations GAdaBoost on Caltech Web Faces. 
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Figure 4-22: Y error bars for all the runs of the 50 iterations GAdaBoost on Caltech Web Faces. 

 

4.8.3 Discussion 

From both Figure 4-19 and Figure 4-20, by examining the average point on the Y error 

bars it can be observed that at 500 false positives the baseline true positive rate is 64% and the 

GAdaBoost 20 and 50 iterations achieved 58% 59% true positive rate respectively. While at 

1000 false positives the baseline achieved 67% true positive rate versus about 64% and 65% 

for the GA 20 and 50 iterations respectively. 

Figure 4-21 and Figure 4-22, by examining the average point on the Y error bars we 

find that at 500 false positives the baseline true positive rate is 46 % and the GAdaboost 20 and 

50 iterations achieved 41% , 43% true positive rate respectively. While at 1000 false positives 

the baseline achieved 51% true positive rate versus about 47% and 48% for the GAdaBoost 20 

and 50 iterations respectively. 

Collectively from the provided figures, it can be noted that GAdaBoost with 50 

iterations has performed slightly better than the GAdaBoost with 20 iterations. It can also be 

observed that at lower thresholds the GA provides closer true positive rates compared with the 

baseline, than it does at higher thresholds. By drawing the Y error bars with the averages it can 

be observed that most of the runs achieved high detection rates with the exception of a couple 

of outliers, which showed worse performance than the majority of the runs. It can also be noted 

that some of the GAdaboost runs had almost reached the same accuracy of the baseline 

classifier. 
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The decrease in performance of both the baseline and GAdaboost can be attributed to 

the fact that both FDDB and Caltech Web Faces dataset include occlusions and light variations, 

as was mentioned at the beginning of this section. Table 4-3 provides a summary of the 

performance of the baseline, GAdaboost 50, and GAdaboost 20. 

Table 4-3 Summary of performance of the baseline, GAdaboost50, and GAdaboost20 

Experiment 

name 

Training Time TPR on FDDB TPR on Caltech Webfaces 

500 FP 1000 FP 500 FP 1000 FP 

Baseline 67 minutes 64% 67% 46 % 51% 

GAdaboost 50 30 minutes 59% 65% 43 % 48% 

GAdaboost 20 20 minutes 58% 64% 41 % 47% 
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CHAPTER (5): CONCLUSIONS 

With the constant automation of processes, much focus has been given to machine 

learning techniques. Machine learning is the process of learning from collected data. As the 

data increases, the need for techniques to reduce the dimensionality of data to reach efficient 

classifiers becomes unavoidable. One of the areas that suffer from the curse of dimensionality 

is the area of computer vision, specifically object detection. In this study, first the 

enhancements done on the Viola-Jones Object detector are reviewed. Then comprehensive 

overviews on Feature Selection methods have been assessed. Due to the multiple evidence 

which suggest the powerfulness of the Genetic Algorithms and their wide use in Feature 

Selection techniques, this work incorporated the use of GA into the Viola-Jones Rapid Object 

Detector aiming to enhance the training time of this detector without a significant loss of 

accuracy. Incorporating the use of GAs will speed up the training process by developing a set 

of representative features to present to the Adaboost learning algorithm instead of going 

through the set of all possible features multiple times due to its brute force nature. The 

motivation behind this technique is that the feature space of such detectors is huge. For 

example, for a 24X24 image the feature space can include more than 160,000 features. In order 

to build the proposed method, the implementation of the Viola-Jones detector in the OpenCV 

library has been modified. Functions that apply GA before the training of each stage were 

added to provide the stage training (that uses the Adaboost machine learning technique) with a 

meaningful set of features, disregarding the insignificant features, by doing so, we were able 

to train classifiers using our proposed technique (GAdaboost). The training time taken has been 

recorded and compared against that of a trained baseline classifier with the same parameters 

but without the use of GAs. The accuracy of detection of the classifiers trained with the 

GAdaboost technique were compared to that of the baseline classifier by testing them on both 

the Face Detection Dataset and the Caltech 10,000 Webfaces dataset, and the results have 

proven to be somewhat promising. 

5.1 Contributions 

We showed the effect of incorporating Genetic Algorithms with the Viola-Jones Rapid Object 

Detector on enhancing the training speed. Experiments to show the progression of the best 

individual and the average population fitness were provided. Other experiments showed the 

speedup of that training process, which can be gained by the reduction of the population size. 
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Also, two variations of the GAdaboost were examined, one with 20 iterations and the other 

with 50 iterations. Both experiments were run multiple times to observe the effect of the 

number of iterations on the performance using the FDDB and Caltech Web Faces dataset. We 

experienced that the training process became up to 3.7 times faster than the original algorithm 

with a mere decrease of 3% to 4% in accuracy. We noted that the 50 iterations performed better 

than the 20 iterations, and both had best case scenarios of almost reaching the baseline accuracy 

at some thresholds.  

 

5.2 Future Work 

Although GAdaboost provided evidence of the successfulness of introducing GAs to 

the Viola-Jones Rapid Object Detecor, there is still more room for enhancements to achieve 

better results with this technique. The future extension of this contribution can be done by 

experimenting with more GAdaboost parameters by varying the iteration numbers, the 

population size, or finding a better stopping criteria for the GA. The parallelizable nature of the 

GA can be utilized to gain an even faster training process. Another enhancement over the 

GAdaboost is to introduce guided randomness to the initial population of the Genetic 

Algorithms. Also the use of filter techniques in picking an originally representative population 

instead of a completely random set of features which might originally include useless features. 
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