3 research outputs found

    A Systematic Analysis of Additive Manufacturing Techniques in the Bioengineering of In Vitro Cardiovascular Models

    Get PDF
    Additive Manufacturing is noted for ease of product customization and short production run cost-effectiveness. As our global population approaches 8 billion, additive manufacturing has a future in maintaining and improving average human life expectancy for the same reasons that it has advantaged general manufacturing. In recent years, additive manufacturing has been applied to tissue engineering, regenerative medicine, and drug delivery. Additive Manufacturing combined with tissue engineering and biocompatibility studies offers future opportunities for various complex cardiovascular implants and surgeries. This paper is a comprehensive overview of current technological advancements in additive manufacturing with potential for cardiovascular application. The current limitations and prospects of the technology for cardiovascular applications are explored and evaluated

    Dynamic, patient-specific mitral valve modelling for planning transcatheter repairs

    No full text
    © 2019, CARS. Purpose:: Transcatheter, beating heart repair techniques for mitral valve regurgitation is a very active area of development. However, it is difficult to both simulate and predict the clinical outcomes of mitral repairs, owing to the complexity of mitral valve geometry and the influence of hemodynamics. We aim to produce a workflow for manufacturing dynamic patient-specific models to simulate the mitral valve for transcatheter repair applications. Methods:: In this paper, we present technology and associated workflow, for using transesophageal echocardiography to generate dynamic physical replicas of patient valves. We validate our workflow using six patient datasets representing patients with unique or particularly challenging pathologies as selected by a cardiologist. The dynamic component of the models and their resultant potential as procedure planning tools is due to a dynamic pulse duplicator that permits the evaluation of the valve models experiencing realistic hemodynamics. Results:: Early results indicate the workflow has excellent anatomical accuracy and the ability to replicate regurgitation pathologies, as shown by colour Doppler ultrasound and anatomical measurements comparing patients and models. Analysis of all measurements successfully resulted in t critical two-tail \u3e t stat and p values \u3e 0.05, thus demonstrating no statistical difference between the patients and models, owing to high fidelity morphological replication. Conclusions:: Due to the combination of a dynamic environment and patient-specific modelling, this workflow demonstrates a promising technology for simulating the complete morphology of mitral valves undergoing transcatheter repairs

    Towards Patient Specific Mitral Valve Modelling via Dynamic 3D Transesophageal Echocardiography

    Get PDF
    Mitral valve disease is a common pathologic problem occurring increasingly in an aging population, and many patients suffering from mitral valve disease require surgical intervention. Planning an interventional approach from diagnostic imaging alone remains a significant clinical challenge. Transesophageal echocardiography (TEE) is the primary imaging modality used diagnostically, it has limitations in image quality and field-of-view. Recently, developments have been made towards modelling patient-specific deformable mitral valves from TEE imaging, however, a major barrier to producing accurate valve models is the need to derive the leaflet geometry through segmentation of diagnostic TEE imaging. This work explores the development of volume compounding and automated image analysis to more accurately and quickly capture the relevant valve geometry needed to produce patient-specific mitral valve models. Volume compounding enables multiple ultrasound acquisitions from different orientations and locations to be aligned and blended to form a single volume with improved resolution and field-of-view. A series of overlapping transgastric views are acquired that are then registered together with the standard en-face image and are combined using a blending function. The resulting compounded ultrasound volumes allow the visualization of a wider range of anatomical features within the left heart, enhancing the capabilities of a standard TEE probe. In this thesis, I first describe a semi-automatic segmentation algorithm based on active contours designed to produce segmentations from end-diastole suitable for deriving 3D printable molds. Subsequently I describe the development of DeepMitral, a fully automatic segmentation pipeline which leverages deep learning to produce very accurate segmentations with a runtime of less than ten seconds. DeepMitral is the first reported method using convolutional neural networks (CNNs) on 3D TEE for mitral valve segmentations. The results demonstrate very accurate leaflet segmentations, and a reduction in the time and complexity to produce a patient-specific mitral valve replica. Finally, a real-time annulus tracking system using CNNs to predict the annulus coordinates in the spatial frequency domain was developed. This method facilitates the use of mitral annulus tracking in real-time guidance systems, and further simplifies mitral valve modelling through the automatic detection of the annulus, which is a key structure for valve quantification, and reproducing accurate leaflet dynamics
    corecore