4 research outputs found

    Duplicate address detection and autoconfiguration in OLSR

    Get PDF
    Mobile Ad hoc NETworks (MANETs) are infrastructure-free, highly dynamic wireless networks, where central administration or configuration by the user is very difficult. In hardwired networks nodes usually rely on a centralized server and use a dynamic host configuration protocol, like DHCP , to acquire an IP address. Such a solution cannot be deployed in MANETs due to the unavailability of any centralized DHCP server. For small scale MANETs, it may be possible to allocate free IP addresses manually. However, the procedure becomes impractical for a large-scale or open system where mobile nodes are free to join and leave. Most of the autoconfiguration algorithms proposed for ad hoc networks are independent of the routing protocols and therefore, generate a significant overhead. Using the genuine optimization of the underlying routing protocol can significantly reduce the autoconfiguration overhead. One of the MANET protocols which have been recently promoted to RFC is the OLSR routing protocol , on which this article focuses. This article aims at complementing the OLSR routing protocol specifications to handle autoconfiguration. The corner stone of this autoconfiguration protocol is an advanced duplicate address detection algorithm. Under well defined assumptions, we prove the correctness of the the proposed autoconfiguration protocol

    Duplicate address detection and autoconfiguration in OLSR

    Get PDF
    Mobile Ad hoc NETworks (MANETs) are infrastructure-free, highly dynamic wireless networks, where central administration or configuration by the user is very difficult. In hardwired networks nodes usually rely on a centralized server and use a dynamic host configuration protocol, like DHCP , to acquire an IP address. Such a solution cannot be deployed in MANETs due to the unavailability of any centralized DHCP server. For small scale MANETs, it may be possible to allocate free IP addresses manually. However, the procedure becomes impractical for a large-scale or open system where mobile nodes are free to join and leave. Most of the autoconfiguration algorithms proposed for ad hoc networks are independent of the routing protocols and therefore, generate a significant overhead. Using the genuine optimization of the underlying routing protocol can significantly reduce the autoconfiguration overhead. One of the MANET protocols which have been recently promoted to RFC is the OLSR routing protocol , on which this article focuses. This article aims at complementing the OLSR routing protocol specifications to handle autoconfiguration. The corner stone of this autoconfiguration protocol is an advanced duplicate address detection algorithm. Under well defined assumptions, we prove the correctness of the the proposed autoconfiguration protocol

    Duplicate Address Detection in Wireless Ad Hoc Networks Using Wireless Nature

    Get PDF
    We consider duplicate address detection in wireless ad hoc networks under the assumption that addresses are unique in two hops neighborhood. Our approaches are based on the concepts of physical neighborhood views, the information of physically connected nodes, and logical neighborhood views, which are built on neighborhood information that is propagated in networks. Since neighborhood information is identified by addresses, inconsistency of these two views might be caused due to duplicate addresses. It is obvious that consistency of physical and logical views on each node's neighborhood is necessary for a network to have unique addresses, while the sufficiency depends on the types of information contained in views of neighborhood. We investigate different definitions of neighborhood views. Our results show that the traditional neighborhood information, neighboring addresses, is not sufficient for duplication detetion, while the wireless nature of ad hoc networks provides powerful neighborhood information in detecting duplication

    Duplicate Address Detection and Autoconfiguration in OLSR

    No full text
    Mobile Ad hoc NETworks (MANETs) are infrastructure-free, highly dynamic wireless networks, where central administration or configuration by the user is very difficult. In hardwired networks nodes usually rely on a centralized server and use a dynamic host configuration protocol, like DHCP [Droms et al. 2003], to acquire an IP address. Such a solution cannot be deployed in MANETs due to the unavailability of any centralized DHCP server. For small scale MANETs, it may be possible to allocate free IP addresses manually. However, the procedure becomes impractical for a large-scale or open system where mobile nodes are free to join and leave
    corecore