1,053 research outputs found

    Hardware Impairments Aware Transceiver Design for Bidirectional Full-Duplex MIMO OFDM Systems

    Full text link
    In this paper we address the linear precoding and decoding design problem for a bidirectional orthogonal frequencydivision multiplexing (OFDM) communication system, between two multiple-input multiple-output (MIMO) full-duplex (FD) nodes. The effects of hardware distortion as well as the channel state information error are taken into account. In the first step, we transform the available time-domain characterization of the hardware distortions for FD MIMO transceivers to the frequency domain, via a linear Fourier transformation. As a result, the explicit impact of hardware inaccuracies on the residual selfinterference (RSI) and inter-carrier leakage (ICL) is formulated in relation to the intended transmit/received signals. Afterwards, linear precoding and decoding designs are proposed to enhance the system performance following the minimum-mean-squarederror (MMSE) and sum rate maximization strategies, assuming the availability of perfect or erroneous CSI. The proposed designs are based on the application of alternating optimization over the system parameters, leading to a necessary convergence. Numerical results indicate that the application of a distortionaware design is essential for a system with a high hardware distortion, or for a system with a low thermal noise variance.Comment: Submitted to IEEE for publicatio

    Hardware Impairments Aware Transceiver Design for Full-Duplex Amplify-and-Forward MIMO Relaying

    Full text link
    In this work we study the behavior of a full-duplex (FD) and amplify-and-forward (AF) relay with multiple antennas, where hardware impairments of the FD relay transceiver is taken into account. Due to the inter-dependency of the transmit relay power on each antenna and the residual self-interference in an FD-AF relay, we observe a distortion loop that degrades the system performance when the relay dynamic range is not high. In this regard, we analyze the relay function in presence of the hardware inaccuracies and an optimization problem is formulated to maximize the signal to distortion-plus-noise ratio (SDNR), under relay and source transmit power constraints. Due to the problem complexity, we propose a gradient-projection-based (GP) algorithm to obtain an optimal solution. Moreover, a nonalternating sub-optimal solution is proposed by assuming a rank-1 relay amplification matrix, and separating the design of the relay process into multiple stages (MuStR1). The proposed MuStR1 method is then enhanced by introducing an alternating update over the optimization variables, denoted as AltMuStR1 algorithm. It is observed that compared to GP, (Alt)MuStR1 algorithms significantly reduce the required computational complexity at the expense of a slight performance degradation. Finally, the proposed methods are evaluated under various system conditions, and compared with the methods available in the current literature. In particular, it is observed that as the hardware impairments increase, or for a system with a high transmit power, the impact of applying a distortion-aware design is significant.Comment: Submitted to IEEE Transactions on Wireless Communication

    Nuts and Bolts of a Realistic Stochastic Geometric Analysis of mmWave HetNets: Hardware Impairments and Channel Aging

    Get PDF
    © 2019 IEEE.Motivated by heterogeneous network (HetNet) design in improving coverage and by millimeter-wave (mmWave) transmission offering an abundance of extra spectrum, we present a general analytical framework shedding light on the downlink of realistic mmWave HetNets consisting of K tiers of randomly located base stations. Specifically, we model, by virtue of stochastic geometry tools, the multi-Tier multi-user (MU) multiple-input multiple-output (MIMO) mmWave network degraded by the inevitable residual additive transceiver hardware impairments (RATHIs) and channel aging. Given this setting, we derive the coverage probability and the area spectral efficiency (ASE), and we subsequently evaluate the impact of residual transceiver hardware impairments and channel aging on these metrics. Different path-loss laws for line-of-sight and non-line-of-sight are accounted for the analysis, which are among the distinguishing features of mmWave systems. Among the findings, we show that the RATHIs have a meaningful impact at the high-signal-To-noise-ratio regime, while the transmit additive distortion degrades further than the receive distortion the system performance. Moreover, serving fewer users proves to be preferable, and the more directive the mmWaves are, the higher the ASE becomes.Peer reviewedFinal Accepted Versio

    A Differential Feedback Scheme Exploiting the Temporal and Spectral Correlation

    Full text link
    Channel state information (CSI) provided by limited feedback channel can be utilized to increase the system throughput. However, in multiple input multiple output (MIMO) systems, the signaling overhead realizing this CSI feedback can be quite large, while the capacity of the uplink feedback channel is typically limited. Hence, it is crucial to reduce the amount of feedback bits. Prior work on limited feedback compression commonly adopted the block fading channel model where only temporal or spectral correlation in wireless channel is considered. In this paper, we propose a differential feedback scheme with full use of the temporal and spectral correlations to reduce the feedback load. Then, the minimal differential feedback rate over MIMO doubly selective fading channel is investigated. Finally, the analysis is verified by simulations
    • …
    corecore