2,903 research outputs found

    Duality theory and propagation rules for higher order nets

    Get PDF
    AbstractHigher order nets and sequences are used in quasi-Monte Carlo rules for the approximation of high dimensional integrals over the unit cube. Hence one wants to have higher order nets and sequences of high quality.In this paper we introduce a duality theory for higher order nets whose construction is not necessarily based on linear algebra over finite fields. We use this duality theory to prove propagation rules for such nets. This way we can obtain new higher order nets (sometimes with improved quality) from existing ones. We also extend our approach to the construction of higher order sequences

    Recent advances in higher order quasi-Monte Carlo methods

    Full text link
    In this article we review some of recent results on higher order quasi-Monte Carlo (HoQMC) methods. After a seminal work by Dick (2007, 2008) who originally introduced the concept of HoQMC, there have been significant theoretical progresses on HoQMC in terms of discrepancy as well as multivariate numerical integration. Moreover, several successful and promising applications of HoQMC to partial differential equations with random coefficients and Bayesian estimation/inversion problems have been reported recently. In this article we start with standard quasi-Monte Carlo methods based on digital nets and sequences in the sense of Niederreiter, and then move onto their higher order version due to Dick. The Walsh analysis of smooth functions plays a crucial role in developing the theory of HoQMC, and the aim of this article is to provide a unified picture on how the Walsh analysis enables recent developments of HoQMC both for discrepancy and numerical integration

    Neural network parametrization of spectral functions from hadronic tau decays and determination of QCD vacuum condensates

    Full text link
    The spectral function ρVA(s)\rho_{V-A}(s) is determined from ALEPH and OPAL data on hadronic tau decays using a neural network parametrization trained to retain the full experimental information on errors, their correlations and chiral sum rules: the DMO sum rule, the first and second Weinberg sum rules and the electromagnetic mass splitting of the pion sum rule. Nonperturbative QCD vacuum condensates can then be determined from finite energy sum rules. Our method minimizes all sources of theoretical uncertainty and bias producing an estimate of the condensates which is independent of the specific finite energy sum rule used. The results for the central values of the condensates O6O_6 and O8O_8 are both negative.Comment: 29 pages, 18 ps figure

    The Pivotal Role of Causality in Local Quantum Physics

    Full text link
    In this article an attempt is made to present very recent conceptual and computational developments in QFT as new manifestations of old and well establihed physical principles. The vehicle for converting the quantum-algebraic aspects of local quantum physics into more classical geometric structures is the modular theory of Tomita. As the above named laureate to whom I have dedicated has shown together with his collaborator for the first time in sufficient generality, its use in physics goes through Einstein causality. This line of research recently gained momentum when it was realized that it is not only of structural and conceptual innovative power (see section 4), but also promises to be a new computational road into nonperturbative QFT (section 5) which, picturesquely speaking, enters the subject on the extreme opposite (noncommutative) side.Comment: This is a updated version which has been submitted to Journal of Physics A, tcilatex 62 pages. Adress: Institut fuer Theoretische Physik FU-Berlin, Arnimallee 14, 14195 Berlin presently CBPF, Rua Dr. Xavier Sigaud 150, 22290-180 Rio de Janeiro, Brazi

    Braided Structure in 4-dimensional conformal Quantum Field Theory

    Full text link
    Higher dimensional conformal QFT possesses an interesting braided structure which, different from the d=1+1 models, is restricted to the timelike region and therefore easily escapes euclidean action methods. It lies behind the spectrum of anomalous dimensions which may be viewed as a kind of substitute for a missing particle interpretation in the presence of interactions.Comment: Dedicated to Gerhard Mack and Robert Schrader on the occasion of their 60th birthday, submitted to Phys. Lett. B, 10 pages, improvements of the formulation, shortening of the text, addition of a formula, removal of typo

    Anomalous Scale Dimensions from Timelike Braiding

    Full text link
    Using the previously gained insight about the particle/field relation in conformal quantum field theories which required interactions to be related to the existence of particle-like states associated with fields of anomalous scaling dimensions, we set out to construct a classification theory for the spectra of anomalous dimensions. Starting from the old observations on conformal superselection sectors related to the anomalous dimensions via the phases which appear in the spectral decomposition of the center of the conformal covering group Z(SO(d,2)~),Z(\widetilde{SO(d,2)}), we explore the possibility of a timelike braiding structure consistent with the timelike ordering which refines and explains the central decomposition. We regard this as a preparatory step in a new construction attempt of interacting conformal quantum field theories in D=4 spacetime dimensions. Other ideas of constructions based on the AdS5AdS_{5}-CQFT4CQFT_{4} or the perturbative SYM approach in their relation to the present idea are briefly mentioned.Comment: completely revised, updated and shortened replacement, 24 pages tcilatex, 3 latexcad figure

    Facts and Fictions about Anti deSitter Spacetimes with Local Qantum Matter

    Full text link
    It is natural to analyse the AdSd+1_{d+1}-CQFTd_{d} correspondence in the context of the conformal- compactification and covering formalism. In this way one obtains additional inside about Rehren's rigorous algebraic holography in connection with the degree of freedom issue which in turn allows to illustrates the subtle but important differences beween the original string theory-based Maldacena conjecture and Rehren's theorem in the setting of an intrinsic field-coordinatization-free formulation of algebraic QFT. I also discuss another more generic type of holography related to light fronts which seems to be closer to 't Hooft's original ideas on holography. This in turn is naturally connected with the generic concept of ``Localization Entropy'', a quantum pre-form of Bekenstein's classical black-hole surface entropy.Comment: this final version is identical to the one which appeared in Commun. Math. Phys. 219, (2001) 57-76, an issue of CMP dedicated to the memory of Harry Lehmann
    corecore