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1. Introduction

The concept of (t, m, s)-nets and (t, s)-sequences in base b was introduced by Niederreiter [10] as a general framework
for constructing point sets and sequences which can be used as quadrature points for quasi-Monte Carlo (qMC) rules. Such
nets (and sequences) are point sets (and sequences of points) in the unit cube [0, 1)°. Throughout the paper a point set is
always understood as a multiset, i.e., points may occur repeatedly.

In general, qMC rules are of the form % Z'nv:_ol f(x,), where xg, ...,xy_1 are the quadrature points, which can be
used to approximate integrals of the form f[o,1 ¥ f(x) dx. Typically one obtains a convergence of the integration error of
O (N~'(log N)*) for such methods [8,10].

The notion of (t, «, 8, n, m, s)-nets and (t, «, B, o, s)-sequences in base b on the other hand was introduced in [6]. These
so-called higher order nets and sequences are used for accurately evaluating high dimensional integrals of smooth functions.
The main objective of this paper is twofold. One is to develop a duality theory which also applies to nonlinear constructions
of nets and sequences. The second one is to present rules which show how to obtain new higher order nets and sequences
from existing ones and how the parameters of these point sets propagate under these rules.

We give the definitions and some properties of (¢, «, 8, n, m, s)-nets and (t, «, 8, o, S)-sequences in base b. To this end
some notation has to be fixed which is used throughout the paper.

Letn,s > 1,b > 2 be integers. For v = (vy,...,v) € {0,...,n} let |v|; = Z;:1 v and define i, = (i1q,...,
vy -+ s ls,15 - -+, Is,,) With integers 1 < ij,vj < .-+ <lij; <nincasev; > 0and {ij1,..., ij,uj} = @ in case v; = 0, for
j=1,...,s.Forgivenvandi,leta, € {0, ..., b—1}""', which we write asa, = (a, ,, ..., iy s eees O g - ees Gsig )
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Fig. 1. Unit interval [0, 1]? and shaded the generalized elementary interval J (i,, @,) forb = 2, v; = v, = 1,i;; = i1 = 2, and a,, =0anda;,, =1.

A generalised elementary interval in base b is a subset of [0, 1)° of the form

s b—1
. . aj1 Gjn 01 Gj.n 1
j(zv,av)_g U [b+"'+m’b+"'+m+bn)’

aj =0

1€(T M\ 1o )

Vi
where {ij1, ..., i} = ¥incase vy, = 0for 1 <j < s. Note that a generalised elementary interval is actually not an interval
anymore, but a union of intervals. An example of a generalised elementary interval in base 2 is shown in Fig. 1. An intuitive
motivation for the definition of generalised elementary intervals is given in [5].

From [6, Lemmas 1 and 2] it is known that for v € {0, ..., n}* and i, defined as above and fixed, the generalised
elementary intervals J(i,, a,) where a, ranges over all elements from the set {0, ..., b — 1}/* form a partition of [0, 1)°
and the volume of J (i, a@,) is b~!"1.

We can now give the definition of (¢, «, 8, n, m, s)-nets based on [6, Definition 4].

Definition 1.1. Let n, m, s, « > 1 be natural numbers, let 0 < 8 < min(1, «m/n) be a real number, and let0 < t < nbe
an integer. Let b > 2 be an integer and # = {Xo, ..., Xym_1} be a multiset in [0, 1)°. We say that # isa (t, «, B, n, m, s)-net
in base b, if for all integers 1 < ij,vj < .-+ <ij1, where 0 < v; < n, with

s min(Vj,ot)

> du<pn—t,

=1 =1

where for v; = 0 we set the empty sum Z?:] ij1 = 0, the generalised elementary interval ] (i,, @,) contains exactly pm—Ivh
points of # foreacha, € {0, ..., b — 1}"h,

A (t,«, B, n, m,s)-netin base b is called a strict (t, «, 8, n, m, s)-net in base b, if itis not a (u, «, B, n, m, s)-net in base b
withu < t.

Informally we refer to (t, «, 8, n, m, s)-nets as higher order nets.

Note that in the definition above the specific order of elements of a multiset is not important. The parameter t is often
referred to as the quality parameter of the net. By the strength of the net one means the quantity fn — t. A geometric
interpretation and an intuitive explanation of the definition of higher order nets is given in [3].

Remark 1.1. We obtain the definition of a classical (t, m, s)-net in base b due to Niederreiter [10, Definition 4.1] from

Definition 1.1 by setting« = 8 = 1,n = m, and considering all vy, ..., v; > 0 so that 2;21 v < m — t, where we set
ijx = vj—k+1fork =1, ..., v;. Inthis case the definition can be simplified to the following. Amultiset » = {xo, ..., Xym_1}
whose elements belong to [0, 1)° is a (t, m, s)-net in base b if for all integers dy, ...,ds > Owithd; +---+ds = m — t

. a1
each elementary interval | = ]_[;=1[%, a:;i:
bt elements of . Hence a (t, 1, 1, m, m, s)-net is a (t, m, s)-net.

) with integers 0 < q; < b% for 1 < j < s and of volume b'~™ contains exactly

Remark 1.2. Let n, m, s, > 1 be natural numbers and let 0 < 8 < 1 be a real number. It follows from Definition 1.1 that
any multiset consisting of b™ points in [0, 1)*is a (| 8n], «, B, n, m, s)-net in base b.

Remark 1.3. Note that b™ " = b™Vol(J(i,, a,)). Hence Definition 1.1 states that the proportion of points of & inJ(i,, a,)
equals the volume of / (i,, a,), i.e.,
{0 < h <b™:x €](iy, a)}|
bm

= Vol((i,, ay)).

We also give the definition of (¢, «, 8, o, s)-sequences from [6].
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Definition 1.2. Let 0, s, > 1 be natural numbers, let 0 < 8 < 1 be a real number, and let t > 0 be an integer. Let
b > 2 be an integer and w = (xg, X1, .. .) be an infinite sequence in [0, 1)°. We say that w is a (t, «, B, o, s)-sequence in
base b, if for all integers k > 0 and m > t/(fo) we have that the finite subsequence {Xyym, Xipm i1, . .., Xgs+1)pm—1} iS @
(t, o, B, om, m, s)-net in base b.

A(t,a, B, 0,s)-sequence in base b is called a strict (t, ., 8, o, s)-sequence in base b if it is not a (u, «, B, o, s)-sequence
in base bwithu < t.

Informally we refer to (¢, «, B, o, s)-sequences as higher order sequences.

Note that in the definition above the specific order of elements of an infinite sequence is of importance.

A geometric interpretation and an intuitive explanation of the definition of higher order sequences is given in [6].

Of particular importance are (¢, «, 8, o, s)-sequences for which « = Bo since these are in some sense optimal, see [6].
For any 1 < § < oo constructions of higher order sequences for which « = o forall 1 < o < § are given in [4] (note that
B and o generally depend on «).

Remark 1.4. We obtain the definition of a classical (t, s)-sequence in base b due to Niederreiter [10, Definition 4.2] from
Definition 1.2 and Remark 1.1 by settingoe = 8 = 0 = 1. Hence a (¢, 1, 1, 1, s)-sequence in base b is a (t, s)-sequence in
base b.

Explicit constructions of (t, «, B, n, m, s)-nets, respectively (¢, «, 8, o, s)-sequences, in prime power bases b are known
using the digital construction scheme. Nets (and sequences) constructed in this manner are referred to as digital (¢, «, 8, nx
m, s)-nets (and digital (t, «, B, o, s)-sequences) over a finite field F,. For more information we refer to [4, Section 4.4]
and [7]. The proof that digital (¢, o, 8, n x m, s)-nets, respectively digital (t, «, 8, o, s)-sequences, over Fj, are in fact special
cases of (t, o, 8, n, m, s)-nets, respectively (t, «, 8, o, s)-sequences, in base b can be found in [6, Theorem 3.5].

The advantage of the more general concept due to [6] (in comparison to classical (t, m, s)-nets) is that (t, o, 8, n, m, s)-
nets and (t, «, B, o, s)-sequences in base b can exploit the smoothness « of a function f (which is not the case for the
classical concepts of (t, m, s)-nets and (¢, s)-sequences). More precisely, we have the following theorem from [1].

Theorem 1.1. Let {xq, ..., Xym_1} bea (t, @, B, n, m, s)-net in base b. Let f : [0, 1]* — R have mixed partial derivatives up to
order a > 2 in each variable which are square integrable. Then

bpMm—1

f(x)dx — bim Z fxp)| =0 (b_(l_l/“)(ﬂ"—t)(ﬂn _ t)ozs) ]
h=0

[0,1)%

Additionally, the following results are known. If @ = B8 = 1and n = m, then the integration error is of @ (b~™"'m®),
see [10].If {xo, . .., Xym_q} is a digital (¢, &, B, n x m, s)-net, then one obtains an integration error of @ (b~#"=9(8n — ),
see [3,4].

Hence it is important to have explicit constructions of higher order nets with a large value of gn — t.

Special constructions of such point sets are based on the digital construction scheme introduced by Niederreiter [ 10] and
generalised in [3,4]; the resulting point sets are referred to as digital nets and sequences. Nowadays many propagation rules
for classical nets and sequences, digital or not, and also for digital higher order nets (see [7]) are known. Roughly speaking,
propagation rules are methods by which one can construct new nets and sequences from existing ones (sometimes the net
or sequence does not change, only the parameters change and the net or sequence with such parameters might not have
been known before).

1.1. Six elementary propagation rules

Some simple propagation rules for (t, «, 8, n, m, s)-nets, respectively (t, «, 8, o, s)-sequences, in base b were already
listed in [6]. For completeness, we repeat them here. We also add some further trivial propagation rules in the following list:

Theorem 1.2 (Propagation Rules 1-6). Let » bea (t, o, B, n, m, s)-netin base b and let w be a (t, «, B, o, s)-sequence in base
b. Then we have the following:

(1) Weakening of strength: # is a (t', o, B/, n, m,s)-net in base b forall 0 < B < Bandallt < t' < fnandwis a
(t',a, B, 0,s)-sequencein base b forall0 < B’ < Bandallt <'t'.

(2) Changeof a: Pisa(t',«’, B/, n, m,s)-netin base b for allo’ > 1 where 8/ = S min(«, ') /o and t’ = [t min(e, &) /],
andwisa (t',a’, B/, o,s)-sequence in base b for all «’ > 1 where B’ = 8 min(«, ') /a and where t’ = [t min(«, ') /a].

(3) Reduction of resolution n: Consider the point set &’ obtained by truncating the base b representation of each coordinate
of each element of # after n’ digits, 1 < n’ < n. The resulting point set is a (t', «, B, n’, m, s)-net in base b, where
t' = max(t — B(n —n'), 0).

(4) Increasing of resolution n: Consider the point set &’ obtained by truncating the base b representation of each coordinate of
each element of & after n digits and adding n’ — n extra digits to every element, all of which are zero, n’ > n. The resulting
point setisa (t,«, B’, n', m, s)-net, where ' = n/n’.
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(5) Lower dimensional projection: The point set obtained by projecting & onto the coordinates in u, whereu C {1, ...,s},isa
(t,, a, B, n, m, |u|)-net in base b, where t, < t.

(6) Multiset union of nets: Let P1, 5, ..., Py be (t, o, B, n, m, s)-nets in base b. Then the multiset obtained from the union of
the elements of 1, P, ..., Py isa (t, «, B, n, m+r,s)-net in base b.

We remark that these propagation rules are analogous to Propagation Rules I-VI in [7] for digital higher order nets.

In this paper we introduce the new concept of a duality theory for not necessarily digital nets (in the digital case, duality
theory is already well known to be an important tool for the analysis and construction of digital nets). This duality theory is
in some cases an important tool to generalise certain propagation rules. Generalising propagation rules is then the second
objective of the paper. In particular, we generalise the following propagation rules, which appeared in [ 7] for the special case
of digital higher order nets: The direct product of two digital higher order nets, the (u, u+uv)-construction, the matrix product
construction, the double m-construction, base change propagation rules and the higher order to higher order construction.
The paper is organised as follows. The new concept of duality theory for not necessarily digital nets is presented in Section 2
and propagation rules for (¢, «, 8, n, m, s)-nets and (t, «, B, o, s)-sequences are presented in Sections 3 and 4 respectively.

Throughout the paper Ny is used to denote nonnegative integers and N is used to denote positive integers.

2. Duality theory

Duality theory, as introduced by Niederreiter and Pirsic [ 12] (see also [7]), is a helpful tool in the analysis and construction
of digital nets. In [7] it was extended to digital higher order nets. Here we introduce a duality theory for higher order nets
which also applies to point sets not obtained by the digital construction scheme. The theory developed below might also be
adapted and of interest in the context of orthogonal arrays and error correcting codes. The basic tools are Walsh functions
in integer base b > 2 whose definition and basic properties are recalled in the following.

Definition 2.1. Let b > 2 be an integer and represent k € Ny in base b, k = x,_1b* ! + - - - 4+ ko, withx; € {0, ..., b — 1}.
Further let w, = e27%/? be the bth root of unity. Then the kth b-adic Walsh function ywali(x) : [0, 1) — {1, wp, .. ., a)g’l} is
given by

pwal,(x) = a)lfl'{ﬁm%"'(“_],
for x € [0, 1) with base b representation x = £ b~! + £b™2 + - - (unique in the sense that infinitely many of the &; are
different from b — 1).
For dimensions > 2,X = (x1,...,%s) € [0, 1)’,and k = (kq, ..., k;) € N}, we define ywalj : [0, 1) — {1, wp, ...,

wy '} by

N
pwali (x) = 1_[ pwaly, (x;).
=1

The following notation will be used throughout the paper: By & we denote the digitwise addition modulo b, i.e., for
x,y € [0, 1) with base b expansions x = Y =, &b~ andy = >"°, n;b~!, we define

o0
x@y=y b,
I=1

where §; € {0,...,b — 1} is given by ¢ = & + n;(mod b). Let © denote the digitwise subtraction modulo b (for short
we use ©x := 0 © x). In the same fashion we also define the digitwise addition and digitwise subtraction for nonnegative
integers based on the b-adic expansion. For vectors in [0, 1)° or Ny, the operations @ and © are carried out componentwise.
Throughout the paper, we always use the same base b for the operations & and & as is used for the Walsh functions. Further,
we call x € [0, 1) a b-adic rational if it can be written in a finite base b expansion. The following simple properties of Walsh
functions will be used several times; see [8, Appendix A].

For all k,l € Ng and all x, y € [0, 1), with the restriction that if x, y are not b-adic rationals, then x & y is not allowed
to be a b-adic rational, we have ywali(x) - pwal;(x) = pwalig(x) and pwali(x) - pwal,(y) = pwali(x & y). Furthermore,
pwalp(x) = pwalgy (x).

Now we turn to duality theory for nets. Let X} , = {0, ..., b" — 1}°. We also assume there is an ordering of the elements
in qu,, which can be arbitrary but needs to be the same in each instance, i.e., let J(éyr = {ky, ..., kpr_1}. (Note that
|Kj | = b*.) By this we mean that in expressions like Zke](ﬁr’ (ak,,),‘,,exls”, and (ck),(e:;cgr the elements k and I run

through the set X , always in the same order.
The following b x b matrix plays a central role in the duality theory for higher order nets

W, = (pwalj (b_rl))k,lexg.r .

We call W, a Walsh matrix.
In the following we denote by A* the conjugate transpose of a matrix A over the complex numbers C, i.e., A* = ZT.
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Lemma 2.1. The Walsh matrix W, is invertible and its inverse is given by W = b~"Wr.

Proof. LetA = (ak,,)k’,e_xg.r = b™*"W,W?. Then, using the orthogonality of the Walsh functions, we obtain

1 S M 1 ifk=1
i = > swal (b~"h) ywal; (b~"h) = o ]_[ Z pwaljey, (h/b") = { 0 ik £l
hex J=1 h=
wherek = (k{,..., k) andl = (I, ...,[) arein chr O
Letb > 2 andr, N > 1 be integers. For a multiset = {xp, ..., Xy_1}in [0, 1)’ and k € J(,ﬁqr we define
N—-1
e = (P = waalk(xh)
h=0
(note that |c,| < N and ¢y = N) and the vector
C=C(P) = (Wexs,- (1)

Fora = (ai, ..., a5) € X, define the elementary b-adic interval

s
L Clj aj—l—l
Fa '_H[br’ br )

j=1

Lemma 2.2. We have

Z pWalk (X0 y) =

{|J<b,| if x,y € Eq for somea € X .,
keKb'r

otherwise.

Proof. We havex,y € [ab™", (a+ 1)b™") for some 0 < a < b" if and only if the b-adic digit expansions of x and y coincide
at the first r digits. From this the result follows. O

Let x € E, for some a € ch’,. Then, using Lemma 2.2, we have

| ol > awwal®) = Z waalk(xh ©X)
b,r

keJCSV keJ(s h=0
N—-1
= Z Z bwalk(xh S) X)
h=0 |Jcb"| kexj .
= |{h: &, € Eq}| = mq.
Definition 2.2. Let b > 2 and r, N > 1 be integers. Let # = {Xq,...,&y_1} be a multiset in [0, 1)° and let JCEJ =
{0,...,b —1}.

1. Fora € Xj , let
Mg = Mqa(P) = |{h : Xy € Eq}|
and
M = M(P) = (Ma)aexs -
Then we call the vector M the point set vector (with resolution r).

2. The vector C = E(J)) from (1) is called the dual vector (with respect to the Walsh matrix W,).
3. The set

Dy = D(P) = {k € Ky, :cx #0}
is called the dual set (with respect to the Walsh matrix W, ).
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In order to relate this definition to the classical duality theory [12] (and to [7]), we briefly consider the special case where
the point set is a digital net. From [12] it follows that for a digital net xg, . .., Xyn_; we have

__Jb™ if kis in the dual net
% =10 otherwise,

where the dual net (for a digital (t, m, s)-net) is as defined in [8, Definition 4.76] and coincides with D,, defined above (and
with O, in the higher order case). For non-digital nets on the other hand, ¢, can also take on values different from 0 and b™.
The relationship between a point set vector and its dual vector is stated in the following theorem.

Theorem 2.1. Let = {Xo, ..., Xy_1} be amultisetin [0, 1)° and let r € N. Let M be the point set vector with resolution r and
C be the dual vector with respect to W, defined as above. Then

1 - -
——W,C=M and C=W:M. (2)
| K| '

Proof. Theﬁfirst resglt follows from Lemma 2.2 and the second result follows from Lemma 2.1 and the identity C =
|X5 IWITM = WM. O

The vector C carries sufficient information to construct a point set in the following way: Given ¢ , we can use Theorem 2.1
to determine how many points are to be placed in the interval Eq, a € X .

Note that for the (t, «, B, n, m, s)-net property it is of no importance where exactly within an interval E;, @ € X b o the
points are placed. Hence we can reconstruct a net from a dual vector with respect to W, provided thatr > | 8n| —t. In other
words, if one knows the dual vector of a net, then one can use this dual vector to obtain the net via Theorem 2.1 provided
that the resolution is greater than or equal to the strength of the net. .

In analogy, the dual space of a digital net also allows us to reconstruct the original point set, see [12]. Although C is
different from the dual space for digital nets, it contains the same information and can be used in a manner similar to the
dual space. This will be shown below by the example of the direct product construction, the (u, u + v)-construction, the
matrix-product construction and the double m construction for higher order nets. In case & is a digital (t, «, 8, n x m, s)-
net, the dual set D, defined in Definition 2.2 coincides with the dual space defined in [7] intersected with X} ,, and if & is
a digital (¢, m, s)-net, it coincides with the dual space in [12] intersected with X} . ’

Although the above results hold for arbitrary point sets, in the following we consider point sets which are nets and show
how to relate the quality of a (t, «, B, n, m, s)-net to its dual set. To this end we need to introduce a function which was first
introduced in [4] in the context of applying digital nets to quasi-Monte Carlo integration of smooth functions and which is
related to the quality of suitable digital nets. For k € Ny and o > 1 let

_Jai+ -+ amin,ey fork >0,
Ha (k) = {0 fork =0,
where for k > 0 we assume that k = k1b% ' + -+ - 4+ k,b» T with0 < x1,...,k, < band1 < a, < --- < a;. Note that

for « = 1 we obtain the well-known Niederreiter-Rosenbloom-Tsfasman (NRT) weight (see, for example, [8, Section 7.1]).
Foravectork = (ky, ..., ks) € Ny we define o (k) = 1o (k1) +- - - + o (ks) and for a subset @ of X . with @ \ {0} # ¢
and o > 1 define

« (@) == min gy (k).
Pu(Q) ke@\w}u()

For @ C {0} we set p,(Q) =1+ 1.
Let # = {Xo,...,Xv_1} C [0, 1)°. In the following we consider for which cases we have D,(#) = {0} (note that
0 € D, () for any point set & with atleast one point). If D, () = {0}, then we have ¢p # Oand ¢, = Oforallk € X} .\ {0}.

By Theorem 2.1 we have 1\71(,7’) = cob™™(1,1,...,1)7T, that is, each box E, contains exactly cob™"™ points for all @ € X .
and & consists of N = ¢q points altogether. This is the only case for which D, (#) = {0}. ’
Conversely, since the number of points in E, must be an integer, it follows that cob™™ € N, i.e., b”™ divides cq and therefore
b” divides N. From this we conclude that if we choose a resolution r € N such that b® > N,ie,r > % log, N, then
Dy (P) # {0}. For a net with N = b™ points this means that we require r > m/s.
The following theorem establishes a relationship between p, (@) and the quality of a (t, «, 8, n, m, s)-net.

Theorem 2.2. Let = {Xo,...,Xm_1} C [0, 1)° be a multiset. Then & is a (t, o, B, n, m, s)-net in base b if and only if
Pa(Dignj—t) = | Bn] —t + LIf P isastrict (to, o, B, n, m, s)-net in base b, then py (D gnj—r,) = [BN] —to + 1.

Proof. It was shown in [1, Theorem 1] that & is a (t, «, 8, n, m, s)-net in base b if and only if for all k € Nj satisfying

0 < uq(k) < |Bn] — t we have Zﬁi? pwalg(x,) = 0 and this is equivalent to py (Dgn)—) > [Bn] — t + 1, since for
k € Ny with u, (k) < [Bn] —t we have k € X Lgn)—t" with equality holding if & is a strict (¢, «, 8, n, m, s)-net. O
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Let now & be a strict (tp, o, B, n, m, s)-net in base b. Let r > |fBn] — to. Then D, D i)\_lgnj,tp and D, \ Dgnj—r
Kp.r \ Kb | pn)—t- FOr any k € Ki .\ Ky 5, We have puo (k) > | fn] — to + 1. Theorem 2.2 implies that pg (D pnj—r,)
[Bn] — to + 1and hence py (Dr) = po(Dpnj—r,) = BNl — to + 1.In particular, for all r, v’ > [Bn] — to we have

Pa(Dr) = pa(Dr) = pa(Dy) = [Bn] —to + 1, (3)
sincen > | fn] — to.

N

3. Propagation rules for (t, &, 8, n, m, s)-nets

In this section, we introduce several propagation rules for (¢, «, 8, n, m, s)-nets, many of which generalise the analogous
results for the digital case given in [7].

3.1. The direct product of two (t, «t, 8, n, m, s)-nets

mq_ . my .
Let P; = {x,)0_y " be a (t;, a1, B1, n, my, s1)-net in base b and P, = {y;}2; ™" be a (tz, &z, B2, N2, M3, $5)-net in base

b. Note that Definition 1.1 implies that we may assume that 8;n; and B;n, are integers (since the i;; are integers). Based on
&1 and », anew (t, o, B, n, m, s)-net in base b is formed, where n = n; + n, m = m; + my, and s = s; + s,. The points of
& are defined to be the direct product of the points from &#; and 9, i.e., & is the multiset of b™ points

(Xp,y), for0<h<b™ —1land0<i<b™ —1 (4)
in some order. The following theorem gives information on the t-value of the resulting (¢, «, 8, n, m, s)-net.

Theorem 3.1 (Propagation Rule 7). Let #; be a (t1, a1, B1, N1, My, S1)-net in base b where we assume that $1n; is an integer,
Py is a (tz, az, Ba2, Ny, My, S7)-net in base b where we assume that B,n, is an integer, and & be defined as above. Then & is a
(t, o, B, n, m, s)-net in base b, where « = max(«, oz), B = min(84, B), and

t < max(Bing + ta, Bany + t1).

Proof. LetC = (Ck)kex; ; be the dual vector of 2, 61 = (C1.k) ey De the dual vector of #; and Ez = (Co.k" )y g2 Dethe
s “*b,n “*b,n
dual vector of 2. Then, for k = (k', k"), where k' € X;',, k" € X%,k € X} ,, we have

p™ —1pM2 —1 b —1 b2 —1

Ck = Z Z pwalg (X, ¥;) = Z pwalg (Xp) Z pWalgr (Vi) = Cr i/ Co k-
h=0 =0 =0 )

Hence ¢, # Oif and only if ¢1 v # 0 and ¢, i # 0. Note that ¢y g, c2,0 # 0 and k = (k’, k") # 0 implies that either k' # 0
ork” # 0orboth k/, k" # 0. Therefore

P (Dy) = min(og (Dn,1), Po(Dn,2)) = MiN(0g; (Dn,1);s Loy (Dn,2)),

where Dy, Dy, 1, Dn 2 are the dual sets of P, Py, Ps.

Let ty be the integer such that & is a strict (¢, &, B8, n, m, s)-netin base b, where « = max(o1, ®3), § = min(81, f2), n =
ny + ny, m = my + my, and s = s; + s,. Then, by Theorem 2.2, Eq. (3), and the assumption that 8;n; and B,n;, are integers,
we have

to = [Bn] — po(Dn) + 1
< |Bn] + 1 — min(py, (Dn,1); Pay (Dn,2))
< |Bn] —min(Bin — t1, fanz — t2)
< Bn] — min(—pBany + Bny + Bing — t1, —Bing + Bny + Bany — tp)
< |Bn] —min(|8n] — Bany — ty, [ Bn] — Bin1 — tp)

max(B;n; + ty, Biy + ).

This shows that # is a (t, «, B8, n, m, s)-net in base b for any integer t such that t; < t < max(B;n; + t1, Bin; + t3). Hence
the result follows. O

3.2. The (u, u + v)-construction

The (u,u + v)-construction in the context of (t, «, 8, n,m,s)-nets in base b has already been discussed in the
recent paper [1, Section 5]. Hence we simply recall the construction and state the result. Assume we are given a
(t1, @, B1, n1, my, s1)-net P; denoted by {x,,}ﬁn;lo’l and a (t, o, Bo, Ny, My, s7)-net P, denoted by {y,-}f’:;’ﬂ where we
assume s; < s,. Again we may assume that S;n; and S,n, are integers. Further, w.l.o.g. we may assume that x, =
(Xn,15 -0 Xnsy) With xp; = Epji/b + -+ + Epjn, /D™ andy; = Yia, ..., Yis,) Withyij = nij1/b + -+ + 0ija, /D™
(if there are digits &, # Oforr > njorn;j, # Oforr > n, we can slightly modify &1, #, by setting &,;, = 0 for
r > ny and n;j, = Oforr > ny, without changing the (t,,, o, B, Ny, My, Sy,)-net property of £, w = 1, 2). Set further
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L= min(2ﬂ1n1 — 2['1 +1, ,327’12 — fz).

We define a new point set # = {zh}gi}jmzﬂ, Zy = (Zn1s - -+ 2Zhs1s,), CONsisting of b™*+™ points in [0, 1)1+ as
follows:
e Forj=1,...,5,i=0,...,b™ —1landh=0,...,b™ — 1we set
Enj1 © Mij &Enj min(e,ny) © Mij,mine,ny) Enj.er1 Enjn,
gy = R e (T T ) 1
OMNijny+1 Onij.e
+<W+"'+ b 1o, <e.

e Forj=s1+1,...,514+53,i=0,...,b™ —1landh=0,...,b™ — 1we set
Zipmi4+hj = Yij—sq-
Then we have the following result, which was first shown in [1, Theorem 3]:

Theorem 3.2 (Propagation Rule 8). Let b > 2 be an integer, let P be a (t1, «, B1, ny, My, S1)-net in base b where we assume
that Biny is an integer, and P, be a (3, «, B2, ny, My, Sy)-net in base b where we assume that 8,n, is an integer. Then & defined
as aboveisa (t, o, B, n, m, s)-netin base b, wheren = ny + ny, m = my; +my, s = s; + S,, f = min(B4, B), and

t = fn] — .

Remark 3.1. Note that we defined the (u, u 4+ v)-construction in such a way that it yields the same point set as the
(u, u 4+ v)-construction for digital nets as considered in [7].

3.3. The matrix-product construction

In this subsection, we will assume that b is prime. We first introduce matrices which are nonsingular by column (NSC),
see [2]. Let Abe an M x M matrix over Zp. For 1 < | < M, let A; denote the | x M matrix consisting of the first [ rows of A.
For1 <k; <--- <k <M,letA(kq, ..., k) denote the | x [ matrix consisting of the columns k, . .., k; of A,.

Definition 3.1. An M x M matrix A defined over Z, is called nonsingular by column (NSC) if A(k1, . . ., k;) is nonsingular for
eachl<lI<Mand1<ky<---<k <M.

It is known that an M x M NSC matrix over Zj, exists if and only if 1 < M < b, see [2, Section 3]. For any integer
1 <M < b, an explicit M x M upper triangular NSC matrix over Z, is given in [2, Section 5.2].

For the remainder of this section, we will assume that A = (A ;) isan M x M upper triangular NSC matrix over Z;, (upper
triangular means that Ay = O0forall1 <[ < k < M).

We now describe how to construct a point set from an NSC matrix, based on the so-called matrix-product construction:

Let1 < s; < --- < sy be integers and define 6y := Oand oy, = s;1 +--- + s, for1 < k < M. Lets := oy. For
1<k<Mletp = {xflk)}ﬁn;k(f], where x,(f) = (x,(llff,,(_l+1, e x,(fz,k) for 0 < h < b™, be (ty, &, Bk, Mg, My, Sx)-nets in base
b where we assume that Biny is an integer. (As with the (u, u + v)-construction, one can without loss of generality assume
that x,(f]) = E,ffj.).l/b + E,fﬁfz/bz + --- with *;‘,f’;)c = 0for ¢ > ny, as setting the remaining digits to zero does not affect the
quality of the net #. However, this is not necessary as the results in this subsection also hold otherwise.)

We now define V = (Vk,l)z/,’[:] =A"le ZQ/’XM and note that V is upper triangular. For

h = hy + hyb™ + -+ 4 Ry p™M M2 -1
with integers 0 < hy < b™ (hence 0 < h < b™ wherem =m; +---+my)andforoy_1 <j <oy, k=1,..., M, define

! M
Zpj = Vk,kx](ql?J ®---D Vk,Mx](,M?js (5)
where @ and also the multiplication are carried out digitwise modulo b, i.e., z,j = Chj1/b + {nj2/b? + - - - Where
!
Snjc = Vk,ks;fl:,)jyc +---+ Vk,Méh(m,c €7y forallc > 1,

with Xﬁlz),j = gif:?j,l/b + “g‘,f,l?~,2/b2 + ---fork <1 < M, where addition and multiplication are carried out in Z;, and where we
assume that for each h andj infinitely many of the digits ¢ j ., ¢ = 1, 2, ... are different from b— 1 (if this is not the case, then,
for example by modifying any of the digits ¢, j -, ¢ > max;<x<m N, will solve this problem without affecting the quality of the
point set; indeed, the forthcoming Theorem 3.3 will establish that the digits ¢, ; c with ¢ > miny <<y (M — k+ 1) (Bne — ti)
can be modified arbitrarily since they do not influence the quality of the net; this way, for M = 2, the (u, u+ v)-construction
can be viewed as a special case of the matrix product construction).

Analogously to the notation used above, we write @, A u® = Al @ - @ A, where the addition and
multiplication are carried out digitwise modulo b.
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Now we define # = {z, ..., zpm_1} withm = my + - - - + my, through z, := (z4.1, ..., zps) for0 < h < b™.

Lemma3.1. Letd = (dy,....dy) € X}, withd, € X,*, and assume that d;, = EB;‘:lAl,kufk) where for | < k, u,(k) =
(u,0) € X", for some w; € X;',. Then we have

1 pmitmytetmy _q M pmr _1q :
- 2 — } : (r
i +my -y bwald (Zh) - l_[ pmr bWalur (th )
h=0 r=1 hr=0

Proof. Let z, = (z'",...,z"™) € [0, 1)+t where 2% = (Zhoy_1+1s - -+ Zho,) € [0, 1% for 1 < k < M. For
d=(dy, ... dy) € X;, withd, € X", we have

pm1+e-tmy g pmittmy 1 M
(k)
Z pwalg(zp) = Z waaldk (z,).
h=0 h=0 k=1
By assumption we have d; = ;‘:1 A,,ku,(k), where for | < k, u,(k) = (u,0) € X,*, for some u; € X,',. Let furthermore

u; = (u, 0) € Xj . Then for each of the above summands we have

M

M
(SK)\ __ (Sk)
,! |1 pwalg, (z,) = kl |1 pwal ok A (z,")

M
= 1_[ bwalea{L]A, u® (Zhop_ 1415 -+ -+ Zn,oy)
k=1 -

(r) ()
l(k) (Vk,rxhryo'k71+]7 ey ‘/’(.rxhr.o‘k)

=

wal
b @Ll A ku

_,
1
=~

(r) Q)
Wy (ol ) 10 K

= i =

()
wal X
b Vir (@‘Ll Au(ul(k)) ( hy )

..(
Il
=~

-

—= T= T T=
i

bwalv

()
X,
k,r(@f‘zlﬂt,kul(k))( he)

ﬁ
Il
-
=
Il
-

©) (x,(fr))

wal
Pl vier (@Ll ALty

Il
1=

,
Il
-

I
1=

(r)
wal (7, 0)),
1 ’ St Vk.r(@;(:l Al,kul) (¢ hy )

ﬁ
Il

where (x,(lrr), 0) < [0, 1)* is just the concatenation of x,(fr)

we now have
r .
1 ifr=1
@ VirAik = { .
~ 0 ifr#l

Hence we obtain ®,_, Vi @L Aty = @, w D), Vi+ALx = , and hence

€ [0, 1)* and the s — s, dimensional zero vector 0. Since V = A™!

M M M
M 0)) = (2" 0)) = ™
[Towalsy (ot na) (@ 0) = [ | owala (G5, 00) = [ [ owaly, G6,).
r=1 r=1 r=1
Hence
1 pmyttmy _q 1 pmittmy 1 pm
_ - ()
[ — hz; pwalg(zp) = PoE=— hz; l_!bwalur *)
= =i r=

mr _
M 1 b 1

e Z bwal,,r(x,(lrr)) . O
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For the rest of the subsection, we make the convention that
M
pa(d) = o (dy).
k=1
If e (d) > 0, then there exists at least one integer [, so that u; # 0; the largest integer [ so that u; # 0 is denoted by [*. We

need the following lemma.

Lemma 3.2. Let d be as in Lemma 3.1 with u,(d) > 0 and let I* denote the largest integer | so that u; % 0. Then we have
Ma(d) = (M —T* + Vg (up).

Proof. The proof follows along the same lines as the proofs of [7, Lemmas 2 and 3]. O

We can now show the main result of this subsection.

Theorem 3.3 (Propagation Rule 9). Let 1 < s; < --- < sy be integers. For 1 < k < M let P, = {x(k)}b =1 where
x,(lk) = (X/(1k<)7,<_1+1’ .. x,(lkf, ) for 0 < h < b™, be (t, «, B, Nk, My, Si)-nets in base b where we assume that Bny is an integer.
The multiset P = {zo, ..., zym_1}, wherezy, := (zn1, . .., zns) and where the z, j are given by (5), forms a (t, «, 8, n, m, s)-

net, wheres = sy + - - - 4+ Sy, 1 = MaXq<k<y Nk, M = My + - - - +my, B = min(1, am/n) and

t < pn— min (M — I+ 1D (Bm — ty).

Proof. According to [1, Theorem 1] it is enough to show that

pm1tmyttmy _q

Z pwalg(zy) =0

h=0

1
pmitmy+t-tmy

foralld € Nj satisfying 0 < uy(d) < fn — t. As d must satisfy p,(d) < Bn — t we may restrict ourselves tod € Xj
satisfying 0 < p,(d) < fn — t. From Lemma 3.1, we know that

pmit+my+-tmy _q

1 pmr—1
== bwa‘d(zh>—1_[<bm D owal (3] ) (6)

h=0

Assume now thatd e K;’n issuch that 0 < u,(d) < Bn —t, then there exists an integer I so that 1, (1) > 0 and as before,
we denote the largest integer [ so that u, (1) > 0 by I*. We now use Lemma 3.2 to conclude that

M = I" + D)(Bpnp — ) > min (M — 1+ 1) (B — &)

= /Sn —t= //Loz(d) > M - I+ D ().
Hence we have shown that 0 < p, () < Bsnx — t and therefore

b —1

Y pwaly, (x))) =0,

hp=0

bml*
i.e., the I*th factor in Eq. (6) is zero. O
3.4. A double m-construction

In this section, we aim to generalise a propagation rule referred to as “double m-construction” in [7, Section 3.4], which
again generalises a propagation rule from [12] for digital (t, m, s)-nets.

Assume we are given a (tl, a1, B1, n, m, s)-net in base b, denoted by ; = {xh}ﬁZ?, and a (t;, o, B2, n, m, s)-net in base
b, denoted by P, = {y,}l o -Forxp = (Xp1,...,Xns), We write
éfhj 1 fhj n
Xpji=—""+ -+ —"=
A b
and fory; = (Vi1 . - -, Yis), We set
Nij1 Nij,
Yij = Sl 22T

b bt
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Furthermore, the dual set associated with &, is denoted by :o,§” and the dual set associated with &, by :off). We are now in
a position to define a multiset # := {2y, ..., z,2mn_;} as follows: Forh" = hb™ +i,0 <h <b™ — 1,0 <i < b™ — 1, we set

2y = &nj ?}9 Mgt o ‘gh,j.nlfini,j,n 0 fnﬁi.j,l .0 esz,j.n’ )
W=0,..,b0""—1,j=1,...,s. We now define a set .#, which in the forthcoming Lemma 3.3 will be shown to be the
dual set of 2. Leta, = (ar1,...,0r5) € :Dn(r), r = 1, 2 and define k = k(aq, a,) := (kq, ..., k), where
ki=a,;+b"(a1;®ay), j=1,....s,
then we set & = {k(aq, a;) € J(énqb 1a; € :D,Sl), a, € :D,Ez)}.
Lemma33. Theset ¥ = {k € X5 , : a1 € 1),51), a, € 33,52)} is the dual set of # = {zo,...,z,m_q} Where

zy == (2Zn1, - . ., Zns) and where the z are given by Eq. (7).

Proof. Let k = (ky,...,k5) € K;,Zn, where kj = a;; + b* (a1 ® azj),j = 1,...,s,and where a, = (a,1,...,05) €
ch’n, r =1, 2. Clearly,

p2m—1 bm—1bm—1 pm—1bm—1 s
Ck = E pwalg(zy) = E E pwaly (Zppm 1) = E E l_[bwallcj(zhbm+i,j)-
=0 h=0 i=0 h=0 i=0 j=1

For brevity, we set k; = k}l) + b”kj(z), where kj(l) and kj@) have the b-adic expansions kj“) =Y k;yl,)b"l and k;z) =
Yoi kb1 Hence

271 & 2n
bwalkj (Znpm1ij) = exp |:b (Z kj(.ll)(éh,ﬂ @ nij) + Z kﬁ),n(o S) T}i,j,ln)>:|

I=1 I=n+1

2mi & 2mi o
exp |:b Z kﬁ) (é;'h,j,l @ Ui,j.l)i| exp |:b Z kﬁ) 06 771',1‘,1):|
=1 =1

bwalkjgl) (xnj ® yi,j)bwalk}(Z) 00y

= pwalg, ; (xn j)pWalq, ; (Vi j)pwale, ;(0 © yij)pwalg, ;(0 © i)
= pwalg, ; (xn JpWala,; (i),

and further

pm—1bm—1 s
a= Y > []ewals,n)swals,,¥ij)

h=0 i=0 j=1
pM™—1bMm—1

=Y Y ywalg, (*n)pwals, ()
h=0 i=0
b™—1 pm—1

= Y ywalg, (%) Y pwala, )
h=0 i=0
bM—1 bm—1

= ) pwalg, (®1) Y pwalg, ().
h=0 i=0

Ifk € N, thena; € i),ﬁ” and a, € i),ﬁz), so we have ¢, # 0 and hence k is in the dual set of £. If on the other hand k is in
the dual set of #, then ¢}, % 0 and hence a; € JD,EU anda; € i),ﬁz), soke N. O

In order to bound the quality parameter of # = {zo, ..., z;2n_}, we define

=S

d=do", 2?) = max max max(0, pq (A1) — pa(arj ® azj)),
J

where R; is the set of all ordered pairs (a;, @;), witha, = (a;1,...,0a-5) € i),ﬁr) \ {0},a;; P ay; = Ofori # jand
aj @ az; # 0. We define the max over R; to be zero if R; is empty. We can now prove the main result of this subsection.
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Theorem 3.4 (Propagation Rule 10). Let $; be a (t1, oy, B1,n, m,s)-net in base b with dual set :D,S]) and P, be a
(t3, a2, B2, n, m, s)-net in base b with dual set i),?). Let d = d(:D,El), 1),52)). Then the point set given by Eq. (7) is a
(t, o, B, 2n, 2m, s)-net in base b with « = max(«, oz), B = min(B,, B,) and

t <max(|2fn] —n— |Bn] +t1 +d, [28n] —n — | Bon] + 3, 0),
if 2" N 2P = {0}, and

t <max([28n] —n— |fin] +t; +d, [28n] —n — | fan] + b, [28n] + 1 — pu (D N D), 0),
if D3 N D # {0).

Proof. Clearly,0 < 8 < 1, « > 1. We show a lower bound for u, (k) for all nonzero vectors k € &, which by Lemma 3.3
is the dual set of the point set given by Eq. (7). To this end we use the property that ,oa(;D,Sr)) > Par (:D,Er)) > |Bn] —t+1,

asa > o, r=1,2.Fork € N, k # 0, we have k = a; + b"(a; & a,) witha, € :D,E]) and a, € :D,EZ) (not both of them are
zero) and hence

ta (k) = po(a; +b" (a1 @ ay)).
We consider four different cases:
1. Ifa; = 0, then a, # 0, and hence
Ha (k) = po (D"@2) = N+ 6 (@) = 1+ pe (D) = n + |fon] — & + 1.
2. Ifa; = 0, then a; # 0, and we obtain in a similar manner that
oK) = o (b"@1) = n+ p (D) = n+ Lfin] -t + 1.

3. Ifay,a;, #0,buta; & a, =0(i.e,a; = Sa,), thena; € :D,EZ), soa; € :D,S]) N :D,EZ). Consequently, if :D,E]) N ;D,f,z) = {0},
this is not possible. If :D,E]) N @,&” # {0}, then

,ua(k) = ,u«a(al) > pa(i)rsl) N @;52))~
4. Ifa;,a, # 0and a; & a, # 0, then we have

S
Y ta(ar + b"ar; @ az))

(k) =

=
S N

= Z Ho(arj+b"(ar; @ az)) + Z Me(ayj)
=1 =1

ujllé,;ujJ#O ajylélauj,zzo
S S

> Y pG@y@®a)+ Y alary). 6)
=1 =1

uj-qlé,aujj#o aqué,;uj-.zzo

We now distinguish between two subcases: Firstly, assume that the first sum in Eq. (8) has at least two terms, then
e (k) > 2n + 2. Otherwise, it has exactly one term, say for j = jo, which gives a smaller value than 2n + 2. In this
subcase we have

o (k) = po(b"(arj, ® azj,)) + ta (@) — e (aj,)
> n+ pue(ar) — (ue(arj,) — e (arj, ® azj,))
> 1+ pe (D) — (D, DP)
>n+[Bin] —t; +1—d(D, 22).

Hence combining the four cases we have

Pe(N) > min(m + |pin] —t1 + 1= d(D, D), n+ fon] — & + 1, pe (DY N DP)),
if o\ N 2 + {0}, and

Po(N) = min(n + [Bin] —t; + 1 —d(DY, D), n+ [fon] —t; + 1),

if o N o = {0}. Now the result follows from Theorem 2.2. O
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3.5. A base change propagation rule

In this subsection we show how one can obtain a net in base b from a net in base b*. Thereby we generalise 11, Propagation
Rule 7] (see also [7, Propagation Rule XI]) to (t, @, B8, n, m, s)-nets. The proof technique and the construction follows
[11, Proposition 7] very closely.

Theorem 3.5 (Propagation Rule 11). If there exists a (t, «, B, n, m, s)-net in base b" with an integer L > 1, then there exists a
(t, o, B, n, mL, sL)-net in base b.

Proof. Let = {x } " be a (t, a, B, n, m, s)-net in base b-. Without loss of generality we may assume that x, =
Xn1s -+ Xns) w1th

n
Xnj = Zéh,j,z(b‘)” for0 <h < ("H™ -1
=1

where all &, j; € Zj.. Let the expansion of & ;; in base b be

gh}'_zzf(l))lkbkl foro<h<@®HY"-1,1<j<s,1<l<n,
k=1

where all zh Lk € Zp.Now we define a multiset @ = {wy, ..., wym._,;} whose elements are in [0, 1)*". The coordinate indices
range from 1 to sL, and so we can denote them by (j — 1)L +kwith1 <j <sand 1 < k < L. Let wy —1).+« denote the
corresponding coordinates of the point wy. To complete the definition of @, we put

n
Wh G-tk = Zzﬁlf)l,kb*’ for1<j<s,1<k<LO<h<b™—1
=1

We will now show that @ is a (t, «, 8, n, mL, sL)-net in base b. To this end we fix v, a,, i, so that 1 < i(;‘—l)L+k,v(]~,1>L+k

<+ <ignknforl<k<Land1<j<ssothat) p ITST(V“")L+"'Q> ij_1)itks < Bn — L.

For wy, to be in J(a,, i,), we need
Wh, =1L+l = A=+t foralll € {ig_nyirivg_py 00 - - - o lG-Dr+k1)s

which is satisfied if and only if z,g’:)l,k = a(—1)1+k, for all | from the above mentioned range.
. L . .
For 1 < j < s we define Uk:l{10—1)L+’<sV0—1)L+k’ s igonitk1) = {5, ..., e} Forl € {e, ..., €1}, we set

Ej,, = Z,Lc] a(,-_l)Hk,,bk‘l, where unspecified aj_1).«,; are chosen arbitrarily. In fact, the number of a_1).4«,; chosen
arbitrarily is given by

s L
Z Z(VJ = VG-nrk) =L Z vj — Z Z V(- 1)L+k-
g —

j=1 k=1
Hence there are b =17~ Xi=1 Tl V-4 generalised elementary intervals of the form
J@. e = ]_[ U Gy G G G
e iR
bL (bL)n bl_ (bL)n (bL)n

j=1 aJ{ =0
le{1,....n}1\{ej > joe i, 1}

s~
of volume (b*)~ %=1 ", However,
min(Vj, ) s L min(VG_1y+ks Ot)
S IRTED 3 S SRR
= =1
S . . . .
hence by the (t, «, B, n, m, s)-net property of £, ] (d, e) contains (bL)m_Zf:1 Y points and hence J(i,, a,) contains

pt =1 - ka1 VG- DLtk (bL)(m*ng] W — pm=Xin ket VG- DLtk

points of @ as required. O
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3.6. Pirsic’s base change rule

In this subsection, we present a generalisation of Pirsic’s base change rule, see [ 14, Lemma 12], also [ 15]. This result shows
how tointerpreta (t, o, 8, n, m, s)-netinbase bt asa (t', o, 8/, n’, m’, s)-net in base Y. Furthermore, we state some special
cases, in particular, we show how to interpret a (t, «, 8, n, m, s)-net in base b as a (t’, &', B/, n’, m’, s)-net in base b and
how to interpret a (t, o, 8, n, m, s)-net in base b asa (t', o/, 8/, n’, m’, s)-net in base b.

Theorem 3.6 (Propagation Rule 12). Let n,n’,m,m’,s,a,L and L' € N, where gcd(L,L') = 1,mL = m'L',nL = n'L/,
let 0 < B < 1beareal number and let 0 < t < PBn and Bn be integers. Then a (t, al’, B, n, m, s)-net in base b" is a

. 1
t', a, g, n’, m’, s)-net in base b*, where

o ([t = D= E5E 4 (—Umod )pn ] [+ ol = DL — 1) — E52E
= min L'(L' 4+ (=L'(mod L))) ’ v |

Proof. The proof proceeds as follows: We start with a generalised elementary interval for the point set in base b’ then
change this into a generalised elementary interval in base b and consequently rewrite the latter as a union of intervals in
base b". /

Assume we are given an arbitrary generalised elementary interval J (i,, a,) in base b" for some given values of v, i,, a,,
suchthaty; > 0,1 < ij,vj < ---<ij1,j=1,...,s, and such that for a nonnegative integer t”

s min(vj,e)

Z Z l.j’l < gn/ —t". 9)

=1 =1

Without loss of generality, we assume that there exists at least one v; satisfying v; > 0, then j(i,, a,) admits the following
representation:

s bt —1
. aj.1 Qi G aj,w 1
1,4, = 7 e AN 7 e NG N
J(iv, ay) ]];[ U [bL kg T e (bL)”>

4,1=0

Asaj; € {0, ..., b* — 1} it has a b-adic representation of the form aj = aj1 +a2b+---+ aj,,_,L/bL/—l, and hence

Gi G i n 4j,1,2 aj.1,1
(bL’)I T pU=Dr+1 pi'—1 pir

for1 <1 <n'whereaj;z €{0,...,b— 1}. We now set

i’ ~
a]-., _ Z ajk
N k

(b ) k=(-1)L"+1 b

ie. ?ij,,y_gﬂ =g, 1 <1<n,1<g<Llandl <j < s Wecan now rewrite the above interval as a generalised
elementary interval in base b,

L = o8 o o
](lv’av)—l_[ U Bttt Tt

j=1 aj,1=0

‘E(l“‘"n/L,)\{ij,vJ-L/ 'ij,UjL’—l senlj g }

aj 1 a Gj 1

where

k=g =l +1—g

for1 <g <I'and 1 <k < v;. Clearly,

i q) = - I Ejﬂ Ej,nL Ej,l aj,nL 1
](lv,av)—l_[ U T+H.+bﬂL’T+.”+an+W .

j=1 @ =0
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Now for 1 <j < sand 1 < k < v;L’ we define integers rj x and e; y such that 0 < rj; < Land
l'j,k = ej,kL — Tjk-

Note that it is possible that e; , = e; x for k # k. Let now {'evj,;j, ... ,'é’j,l} be the set of distinct elements of {ej,l,jy, S8
ThenV; < vl and {ejyr, - -, €1} = {&5, .- -, €}
LetV = (1, ..., Vs).For 1 <j < sforfixed d;; and'¢;,L — (L — 1) <[ <L, where 1 < k <V}, we set

[ N = - L2~ ~
aj% = b ;3 kL—(L—1) +b ;3 kL—(L—2) +- a3 L

Furthermore, for fixed j, only v;L" of the @, where €;,L — (L — 1) < I < € Land 1 < k < 7}, are specified in @,. Hence
j(?,,, @,), and therefore also J (i, @,), is the union of pEE= U K disjoint intervals of the form

-1 =~ =~ =~ =~ =~ =~
G0 G G e Ga o G 1
H EU [(bl) e T T e wh T T e (bL)n)'

lef1,..., ”)\{ej,vj""*%},l}

If we can show that

s min(vj, al’)

Z Z e < pn—t, (10)
j=1 =1

then each interval contains (b*)™ "1 points, and consequently J(i,, a,) contains

/ / Iy / _
(bl-)m \vllblvlﬂ- Phl’ — pmi=Ivhil® _ pml (12514 (bL) Ivlh

points and the proof is complete. Hence ] (i,, a,) contains the right number of points if Eq. (10) is satisfied, or equivalently,
if
s min(¥j, al’)
> Z L < L(Bn—t).
j=1 =1
SoJ(i,, a,) still contains the right number of points if
min(v;L’,aL) min(viL’,eL")

Z Z zj,+z Z rii < L(Bn—t). (11)

min(v;L’ aL’)~

We now find a bound for 3, 3",

s min(yL’, aL’) s L'min(vj,e)
Z Xow= X
j=1 I=1
rnm(u] o) [/ rmn(vj a) [/
= Z 2 Qb = Z 2 2l +1-g)
k=1 =
s min(vj,o) [ [/ -1
j=1 k=1 g=1 g=1
s min(Vj o) - (L/ . ])L/
= 1 WL = 2
j=1 k=1
s min(vj o) , f
L' — 1)L
< [l] kL/Z] _ ( )
j=1 k=1 2
< o —pp2 - EZDE (12)
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where we used Eq. (9). Combining Eqs. (11) and (12) we find that ] (i, a,) contains the right number of points if

s mm(u}L al)

t'L? 4 J—Z Z rj > tL.

That is, we can set

L' — DL
t’ = min {r“ St 4 (% —-M(t") > tL} , (13)
where
s min(yL’,al’) s min(vj,a) /3
M(t") = max Z Z —l,,(mod L)) :ij; > 0and Z Z ij) < fn —t"},
j=1 =1 =1

where we recall’l?j, =% L—rfor1<l<yland1<j<s, andﬁi},(k,l)L/ng =i«'+1—gfor1<g<ILand1<k<y.

We now aim to find an upper bound for ZJ ; me(ij ol )(—Ai},,(mod L)). We have

s min(yL’al’) s min(vj,a) [/

Z Z (—hamod 1)) =Y > Y (il — 1+ g(mod L))

j=1 k=1 g=1

s min(vj,a) [/ s min(vja) [/
Z Z(—g,ﬂ(modnwz > D (g—1(modL)
j=1 k=1 g=1 =1 k=1 g=1

min

“

o)
Z(—U(mod L))ij + sa(L — 1L/
1 g=1

S

< (=L'(mod L)L (gn’ - t”) +sa(l — DL

= (=L'(mod L))(Bn' — t"L") + sae(L — L.
From Eq. (13) it follows that
L —-nr

> — ((=L'(mod L))(Bn’ — t"L') + (L — DL'as) > tL

t' < min {r” R e

This condition is satisfied for all t” with

o [ se@ = — S0 4 (L (mod L))ﬂn/—‘

L'(l' + (—L'(mod L)))
which gives the first bound. For the second bound, let

, _tL+(sa—1)(L—1)—W2””—‘
t = _ ,

L/

then, using Eq. (12), we have

s min(¥j,al’)

z E e =
j=1 =1

s min(yl’,al’) s min(yl’,al’)
> TR > T
= = =1 =

s min(yLl’,aL’)

1 , r—-1nr
; (IBn/L/_t/L/Z_ 5 +Z Z il

= =

s —
j=1 =1
1 U —nr
< — (gL' —t"L? - ¢-nr +sa(l— DL
L 2
1 . , @ -nr @ -nr ,
=7 pn'l — Lt — (sal — 1)(L — 1) + 5 - 5 +sa(l — 1L

Il
=
=
|
-
+
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min(Vj,al’) ~

By assumption, Bn is an integer, Z;:1 h ej 1 is an integer, hence
s min(¥j,al’)
2 2 Gspn-t
=1 1=
which completes the proof. O

We point out that oL’ changes to « in Theorem 3.6. Using Propagation Rule (2), we can establish the following corollary
to Theorem 3.6, which avoids a change in the parameter «.

Corollary 3.1. Let n,n’,m,m’,s, o, Land L' € N, where gcd(L,L') = 1,mL =m'L’,nL = n'L’,let 0 < B < 1 be a real number

and let 0 < t < Bnand Bn be integers. Then a (t, «, B, n, m, s)-net in base brisa(t’, «, 5 n’, m’, s)-net in base bL/, where

([t sea—nr— 50 4 —rmod D)pn | [+ ol = DL — 1) - 5L
£ =min L'(L' + (—L'(mod L)) ’ L? '

However, in some cases it is possible to improve on Corollary 3.1.

Theorem 3.7 (Propagation Rule 14). Let n,n’, m, m’,s,a,Land L’ € N,L' > a where gcd(L,L') = 1,mL = m'L’,nL = n'L’,
let 0 < B < 1 beareal number and let 0 < t < pn and Bn be integers. Then a (t, «, B, n, m, s)-net in base b* is a
t, o, g n',m’, s)-net in base b*', where
; , tL+ sf (., L) — “=1¢ 4 (—L'(mod L)) An’ tL+ (s — (L — 1) — b
= min N 5
a(l’ + (=L (mod L))) al’

and where

o

fla,L) = Z(l — 1(mod L))

L e A GE )}

Proof. Using the same definitions as in the proof of Theorem 3.6, we aim to establish that the assumption

s min(vj,a)

2 : Z l.j’lf*n/—f”
= = o

where t” is a nonnegative integer, implies that

s min(Vj,@)

YD Gispn—t (14)

=1 =1

We proceed in a manner similar to the proof of Theorem 3.6, i.e. J(i,, a,) contains the right number of points if Eq. (14) is
satisfied which in turn is equivalent to

s min(Vj,a)

Y > EuL<pnL—t
=1 =1

and hence J (i,, a,) still contains the right number of points if

s min(yL’ ) s min(yL’ )
D02 Wt ) maspnl-d (15)
=1 = =1 =

min(y;L’, )

We now find a bound for 2;21 =1 i 1. We have
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s mm(v]L u)

IMDBNTE ZDI

=1

uJ>0
= ii[ij,wr 1—1]
=
S o S o
= L/ZZI}',] +ZZ(1_1)
j=1 I=1 Jj=1 I=1
vJ'>O vj>0
S (-1
— al Zzﬂ e ol
v>0 v>0

IA

ol (én/ _ t~> _ (= Da
o 2

Hence, combining Eqs. (15) and (16), we find that J(i,, a,) contains the right number of points if

s mm(ij ,a)

t'al + 7—2 Z rji > tL.

We set

(¢ — Do

t' = min {r” ol + —M({") > tL} ,

where

s min(yL’,a)

M@y =max{> > (i/(mod L)) : ij; > 0, szl < én t"
j= =1

Jj=1
v]>0

We now establish a bound for Z] 1 me(v’L a)(—Tj,,(mod L)), where we set f («, L) = Zf‘:l(l — 1(mod L)). We have

s mm(ij ,a)

Z Z (<ij(mod L)) = ZZ —ij1L' — 1+ I(mod L))

\/ >O

< Z Z(—z, L (mod L)) + Z Z(l — 1(mod L))

v] uj>0

< (=L'(mod L)) (’3 ' t”) +sf(a, L).

Hence

’ . // // ’ (Ol - 1)0[ ’ ’ ”
t < mm{ ct"al 4+ — - ((—=L'(mod L))(Bn — t"a) + sf (e, L)) > tL},

which is satisfied for all t” with

L [t +sf(@, L) + (~L'(mod L)) gn’ — (“2”“—‘
t" >

a(l' + (—L'(mod L)))

To obtain the second bound, we set

' =

L+ (o — DL~ 1) — @50
al’ '



380 J. Baldeaux et al. / Discrete Mathematics 311 (2011) 362-386

Consequently,

s min(j,a) s min(yL’,a) s min(vL’,)

o SUEH (ol RS ol o

=1

/\

2o al’ ﬂn/—t” B (¢ — Do N sa(L—1)
L \« 2L L

1
ﬁn—t+—

IA

hence ), me(vf a)NJ | < Bn — t and the proof is complete. O

In the following corollary, we recover the result due to Pirsic.

Corollary 3.2. Let m, m’,Land L’ € N, gcd(L,L’) = 1, mL = m’'L’ and let 0 < t < m be an integer. Then a (t, m, s)-net in base
blisa (t',m’,s)-net in base b, with

, . ("tL—i—(—L’(mod L))m’"‘ "tL+(s— DL - 1)"‘)
t" = min , .
L'+ (—L'(mod L)) r

Proof. The proof follows immediately from Theorem 3.7, where we set« = 8 = 1,n = mand n’ = m’ and notice that
fa,ny=0. O

We again remark that in Theorem 3.6, oL’ changes to «. However, when considering a base change from b to b, there
is no need to change «, as the following theorem shows, which can be regarded as a generalisation of [7, Theorem 9] and
[13, Lemma 9].

Theorem 3.8. For o, n,m,s,L € N,0 < 8 < 1areal numberand 0 < t' < Bn an integer, a (t’, o, B, n, m, s)-net in base bt
isa (t,«, B,nL, mL, s)-net in base b, where
t<(t'+el+ (sa —1)(L—-1)

and e = 0 if Bnis an integer and e = 1 otherwise.
Proof. The proof is similar to the proof of Theorem 3.6. O

Finally, we consider a base change from b to b", which can be considered to be a generalisation of [9, Lemma 2.9].

Theorem 3.9. Let n,m,s,«o,L' € N, let 0 < B < 1 be areal number and let 0 < t < Bn/L be an integer. Then a
(tL? + @, al’, B,nl', mL, s)-netin base bisa (t, o, g, n, m, s)-net in base b .
Proof. The proof is similar to the proof of Theorem 3.6. O

Furthermore, we point out that «L’ changes to « in Theorem 3.9. Using Propagation Rule (2), we can establish the
following corollary to Theorem 3.9, which avoids a change in the parameter «.

Corollary 3.3. Let n,m,s,a,l' € N let 0 < B < 1 be a real number and let 0 < t < Bn/L' be an integer. Then a
2+ ¢ —l)L ,a, B, nL',mL, s)-netin base bisa (t,«, £, n, m, s)-net in base b* .

) L/ E)
However, in some cases it is possible to improve on Corollary 3.3.

il n, m, s)-net

S o

Theorem 3.10. Let n,m,s,a,L € N,L' > «, then a (tal’ + @, a, B,nl’,mL’, s)-netin base bis a (t, a
in base b* .

Proof. The proof proceeds along the same lines as the proof of Theorem 3.7. O
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3.7. A higher order to higher order construction

Next we consider a propagation rule which was referred to as “A higher order to higher order construction” in [7]. In [4],
it was shown how to construct digital (t, @, 8, n x m, s)-nets from digital (t, m, sd)-nets. Essentially, the “higher order to
higher order construction” in [7] replaces the digital (t, m, sd)-net with a digital (t, o, 8, n x m, sd)-net, but makes use
of the same construction algorithm. We now show that the same idea can be used for (t, «, 8, n, m, s)-nets. Assume we

are given a multiset {Xg, X1, ..., ¥ym_1} forming a (t’, &’, B’, n, m, sd)-net in base b. We write X, = (X1, ..., Xnsq) and
Xnj =&nj1/b+ Eh,jyz/bz +..-foral0<h<b™—1and1<j<sd.
Then we construct a multiset {yo, ..., yym_1} as follows: For0 < h < b™ we sety, = (Y1, - - ., Yns) in [0, 1)° where for
1<j<s,
n d
Ynj= D> Engonasrab (17)
=1 k=1
Theorem 3.11 (Propagation Rule 15). Let d € N and let the multiset {x, ..., Xyn_1} be a (', &', B/, n, m, sd)-net in base b,

where we assume that 8'n is an integer.
Then for any a > 1, the multiset {yo, ..., ¥ym_1}, defined by Eq. (17), forms a (t, «, B’ min(1, «/(&’d)), dn, m, s)-net in
base b with

t = ’Vmin (d, %) min (/S/n, t'+ {WJ)W .

Proof. The case where 8’'n < t’ + |a's(d — 1)/2] is trivial. Hence we assume from now on that 8'n > t" + |a/s(d — 1)/2]
and that we deal with an arbitrary generalised elementary interval J (i, a,), for some given values of v, i,, a,, such that
1<y < - <ij1, v >0,for1 <j<sand

s mm(uj )

Z Z 1],</3m1n( )dn—t
j=1 =

We need to show that J(i,, a,) contains b™ "I points. For y,,0 < h < b™ — 1, to be in J(i,, @,), we need for 0 < h <
P"—1,1<j<s,1<l<nand1<k=<d,

Nhj,(-Dd+k = G, a-1ya+k Whenever (I — 1)d + k € {ij,, . .., i1},

where yp ; :== nnj1/b+-- o—|—nh,j,dn/bd”. But from the construction method we find that the condition 0y j 1—1)d+k = aj,(1—1)d-+k
is equivalent to &, _1ydtki = Gj,q—1)d+k- AS {Xo, X1, ..., Xpm_1} forms a (t', &, B’, n, m, sd)-net, we translate the above
condition into a condition on a generalised elementary interval of dimension sd. In particular we set

aZj—l)dﬁ—k,l = 0j,(1—1)d+k> if (l — ])d +ke {ij,vj-a ey ij’]}.
Also, for each choice of 1 < j < sand 1 < k < d we let w;_1)¢+« denote the largest integer such that there are
€Gi—1d+k,1 > " " > e(i—l)d+k~w(jf])d+k > 0 for which

{ej—natiu — Dd+k:u=1,..., wi—nare} € {ijy,---, 01}
If no such wj_1)q+« exists we set w_1ya+k = 0and hence {(ej—1yatru—Dd+k:u=1,. w(, 1d+k} = . Consequently,
for dimension (j — 1)d + kwith1 < j < sand 1 < k < d, the digits a’(ifl)d%iy], . (] Dk sk are specified

whenever w_1yq+k > 0. In particular, w(j_1)¢+« gives the number of digits in dimension (] — 1)d + k that the generalised
elementary interval corresponding to the (t', o', 8/, n, m, sd)-net contributes to dimension j of the generalised elementary
interval corresponding to the (t, o, ' min(1, «/(«’d)), dn, m, s)-net. We hence note that

Z Wi_nd+k =V for1 <j<s (18)
k=1
and obtain the following generalised elementary interval J (e, @) of dimension sd, where ey, = (1,1, .- -, €1,1, - - - » €sd,wyg>
., esq1) and a,, = (d] wys e ay ..., 0y weg? a;, 1). By the property of the (t', &', B, n, m, sd)-net, if

sd mm(wj o)

> Z e < pn—t, (19)
=1 =

sd ) NS . . . . L. . .
then J(ey, a,,) contains pML= W = pm =Y points, where we used Eq. (18), as required. By distinguishing the cases
o'd < aand &'d > «, it was shown in [7] that Eq. (19) holds, which completes the proof. O
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Remark 3.2. Similar to [7, Example 1] one can employ a (0, m, 2)-net in base b to show that Theorem 3.11 cannot be
improved on in general.

Corollary 3.4. Let d € N and let {Xq,...,Xym_1} be a (t', m, sd)-net in base b. Then for every « > 1, the multiset
{¥o, ..., ypn_1} defined by Eq. (17) forms a (t, a, min(1, &), dm, m, s)-net in base b with

t = min(d, o) min (m, t'+ r(dz_l)J> .

Proof. The proof follows immediately from Remark 1.1 and by setting '’ = 8/ = 1and n = m in Theorem 3.11. O

Theorem 3.11 can be improved when a = «’, which we show in the following.

Proposition 3.1 (Propagation Rule 16). Let o, d € N and let {xXo, ..., Xym_1} forma (t, o, B, n, m, sd)-net in base b. Then the
multiset {yo, ..., Yypm_1} defined by Eq. (17) forms a (t, «, 8, n, m, s)-net in base b.

Proof. Letv = (vy,...,v5) € {0,...,nd}’ begivenandforj=1,...,sletdn > ij; > --- > iy > 0 be such that

s min(a, v]
B SRTEVIED
Let iy = (i1, eesiiugeesdstyoeesdsn) @ = (@i qsees @iy s oo Gsiqs s Gsig,) € {1, nd}", and a
generalised elementary interval
s b—1
a; a a aj 1
i = ot hnd Tl jnd 7
](lv’a")_l—[ U |:b + +bnd’ b +- +bnd+bnd>’
Jj=1 aj, (=0

le{1,...,nd}\{ lj 1, ljyv].}

where {ij 1, ..., ij,uj} =fincasev; = 0for1 <j <s, be given.

Let ¥y = nity--->Yns) With yus = nnj1/b + nnja/b* + ---. Theny, € J(i,, @,) if and only if ny;; = aj; for all
Le{ij1, ...,ijﬁvj}andl <j<s.

We define now a new generalised elementary interval J’ in dimension sd such thaty, € J(i,, a,) if and only if 8, € J'. To
thisend,forj=1,...,s, leta/o._])d%, = aj (—1y¢+k Where1 < k <dand1 <[ < naresuchthat (I-1)d+k € {i;1, ..., ij,\,j}.
Forj = 1, ..., sd we have now specified a]f, » for certain values of i € {1,..., n}. Let Uy be the set of i’ for which a]f,.i, is
specified, i.e.,

U={1<i<n:{—-Dd+j—G—Ddeliji,...,i,}forj=[j/d]}.

We set Uy = {ijf, Do i]f/ 1, where we assume that the elements are ordered such that n > ijf, > e > ij/./ , >0
5 Wy Yy
. ’ / / sd _ ./ :/ s —
Define now v/ = (vy,...,vy) € {0,...,n}*, l, = (11,1,...,lwq,...,lsd,],... sdv) and @ = (all11
/ ! /7 .
a“,1 REE ,asd » ...,asd,i,d / )-Then]" = J(i,,, a,,) has the property that y;, € J(i,, a,) 1fand only ifx, € J(i,, a,).
V7 sd,vey

Note that vu haer oot vb hara = Vi for 1 < j < sand therefore |v|; = [v'|;. Thus if ]’ contains b™=1'I points, then

(a, )
J(i,, a,) contains b™ "I points. The former will be the case if Z . Z,m“; kKl ; < Bn—t,which we show in the following.

Ifv; < «, then

jd v

. i1 B
S Sgs[B]er |2
J=@(-1)d+1 I=1 o o

ij»] + -4 ij,Vj + Uj(Ol — 1)

IA

o
Sty
. . . vi(vi+1
since iy + - -+ iy, > ’(’#)
Ifv; > «, then
mm(u o)

£ el

F=(—Dd+1 =1

GRS EEE
o o o

G+t

IA
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Therefore we have

sd min(a,vj/) s min(a,v))
. .
)DID B TED DD BT e
j=1 =1 =1 I=1
Hence the result follows since {Xo, ..., xym_1}is a (t, @, B, n, m, sd)-net and therefore J' contains pm=1v'l1 points. O

4. Propagation rules for (t, «, 8, 0, s)-sequences and an application

Based on results from Section 3 we deduce properties of (t, «, 8, o, s)-sequences in base b.

4.1. A higher order to higher order construction for (t, «, B, o, s)-sequences

We use the higher order to higher order construction from Section 3.7 to construct (t, «, 8, o, S)-sequences in base b.
Assume we are given an infinite sequence {xq, X1, ...} forming a (t’, o/, B, o, sd)-sequence in base b. We write x;, =
(X1 - - > Xnsa) and Xy j = &pj1/b+ &nja/b* + -+ -forallh > 0and 1 < j < sd.

Then we construct an infinite sequence {yo, ¥1, . ..} as follows: For h > 0 we setyy = V.1, - . -, Yns) in [0, 1)° where
oo d
Ynj= Z Z En,g-narkb Y (20)

I=1 k=1

Theorem 4.1. Let o/, d,s,0 € N,0 < B’ < 1 be such that 8'c is an integer, and t' > 0 be an integer. Let {Xo, X1, ...}
bea (t',a', B, o, sd)-sequence in base b. Then for any a > 1, the infinite sequence {yo, ¥1, . ..} defined by Eq. (20) forms a
(t, @, B’ min(1, a/(a’'d)), do, s)-sequence in base b with

= [min(a.5) (¢ [ 52 ]) |

Proof. We need to show that for all k > 0 and al m > m the multiset {yipm, ..., ¥k+1pm—1} forms
a (t, o, B/ min(1, ﬁ), dom, m, s)-net in base b. It is clear that m > ﬁ% and hence {Xpm, ..., Xg4+1pm_1} forms a
(t', o', B', om, m, sd)-netin base b. But 8’om is an integer, hence {yypm, . .., Yx+1pn—1} formsa (t, o, B’ min(1, ﬁ), dom,

m, s)-net in base b, by Theorem 3.11, where t < [min(d, %)(t’ + L%J)}. Hence Eq. (20) defines a
(t, @, ' min(1, a/(¢'d)), do, s)-sequence. O

Remark 4.1. As in Remark 3.2 and [7, Example 1] one can employ a (0, 2)-sequence in base b to show that Theorem 4.1
cannot be improved on in general.

Similar to Corollary 3.4 in Section 3.7, we consider the following special case.
Corollary 4.1. Let o', d,s,0 € N,0 < B’ < 1 be such that B'c is an integer, and t' > 0 be an integer. Let

{%0, X1, ...} be a (t', sd)-sequence in base b. Then for any o > 1, the infinite sequence {yo, y1, ...} defined by Eq. (20) forms
a(t,a, min(1, %), d, s)-sequence in base b with

t = min(d, @) <t/ + {SMT_UD .

The following result is analogous to Proposition 3.1.

Proposition 4.1. Let {xy, X1, ...} be a (t, «, B, o, sd)-sequence in base b. Then the infinite sequence {yo, y1, ...} defined by
Eq. (20) formsa (t, «, B, 0, s)-sequence in base b.

Proof. We need to show that for k > 0,m > t/(Bo), the multiset {ygm, ..., Yas1pm—1} forms a (t, o, B, om, m, s)-
net in base b. But for k > 0,m > t/(Bo), {Xwm, ..., Xi+1pm_1} forms a (t, «, B, om, m, sd)-net in base b, hence, by
Proposition 3.1, {yim, . .., ¥k+1)pm—1} forms a (t, o, B, om, m, s)-netinbase b. O

4.2. A base reduction for (t, ., B, 0, S)-sequences

We show that a (t', «, B, o, s)-sequence in base b* can be considered as a (¢, «, 8, o, s)-sequence in base b with some
quality parameter t. The following theorem generalises [ 13, Proposition 4].
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Theorem 4.2. Let o,s,a,L' € N,let 0 < 8 < 1be areal number andt’ > 0 be an integer. A (t', o, B, o, s)-sequence in base
btisa(t,a, B, o,s)-sequence in base b with

t=({"+e)l+ (sa — 1+ Bo)(L—1),

where e = 0 if o is an integer and e = 1 otherwise.

Proof. Let {xy, X;,...} be a (t',«, B, 0, s)-sequence in base b', t as above and fix m > ﬁ% and write it in the form
m = pL + r with integers p and r such that 0 < r < L. Note thatp > ﬁt—; For a fixed integer k > 0, we consider the
multiset £ = {Xpm, ..., Xe+1pm—1}. Then & can be split up into b" multisets {Xpi, ..., X pet_1) where kbm <1 <

(k+ 1Db".Asp > ﬁ[—; each of these subsequences forms a (t/, o, 8, op, p, s)-net in base b', which by Theorem 3.8 is a
(" +e)L+ (sa —1)(L—1),a, B, 0pL, pL, s)-netinbase b. A ((t' + e)L+ (s« — 1)(L — 1), «, B, opL, pL, s)-net in base b is
alsoa ((t'+e)L+(sa—1+Bo)(L—1), a, B, om, pL, s)-net in base b, as the strength of the latter is smaller than the strength of
the former. An application of Propagation Rule (6) shows that £ isa ((t'+e)L+ (s« — 1+ Bo)(L—1), a, B, om, pL+T1, s)-net

in base b, and hence a (t, «, 8, om, m, s)-netinbase b. O

4.3. A base expansion for (t, o, 8, o, S)-sequences

Here we consider a base change in the opposite direction: We show that a (t, «, 8, o, s)-sequence in base b can be
interpreted as a (t, «’, B/, o, s)-sequence in base bY. The following theorem generalises Theorem 3.9 from Section 3.6 to
(t, o, B, o, s)-sequences (see also [ 13, Proposition 5]).

Theorem 4.3. Let o,s,a, L' € N, let 0 < B < 1be a real number and u > 0 be an integer. Then a (u, aL’, B, o, s)-sequence in
basebisa (t, a, g, o, S)-sequence in base bL/, with

"u (L’—l)—‘
t=|— — .
L/Z )

Proof. Denote the (u, al’, 8, o, s)-sequence in base b by {xq, X1, ...}, which is of course also a (tL? + w al/, B,o,5)-
sequence in base b. By Definition 1.2 for all integers k > 0 and m > 1 the finite subsequence

{xkme/s ) X(k+l)me/*1} (21)
forms a (min(tL? + % Boml),al’, B, omL’, mL, s)-net in base b. We consider two cases:

1. Assume first that m is such that tL”? + (L’7271>L’ < Boml/, then by Theorem 3.9, the multiset given by Eq. (21) forms a

(t, a, Lé om, m, s)-net in base bY. Furthermore, tI'? + w < Boml’ implies thatt < L%omj.
2. Now assume Soml < tI? + W According to Remark 1.2, the multiset given by Eq. (21) forms a

(Lgamj,a, g om, m, s)-net in base b*. Furthermore, BomL' < tL'? + w implies that Lgamj <t.

om, m, s)-netin base bY'. We conclude that for all m such
o, s)-sequence in base b*'. O

Hence the multiset given in Eq. (21) is a (min(t, L%amj ), a 4

s U
that gam > t we obtaina (t, o

om, m, s)-net in base bt and therefore a (t, a, Lﬁ

B
’ L/ E)
We also consider a special case based on Theorem 3.10.

Theorem4.4. Let o,s,a,'’ € N, L' > «a,let 0 < B < 1 be areal number and t > 0 be an integer. Then a
(tal + @ o, B, o, s)-sequence in base b is a (t, «, g o, S)-sequence in base Y,

Proof. We denote the (tal + @, o, B, o, s)-sequence in base b by {xg, X1, .. .}. Then by Definition 1.2 for all integers
k > 0and m > 1 the finite subsequence

{Xkme’ g ey X(k+l)bm"/—1} (22)
forms a (min(tal’ + “5P%, BomL'), o, B, omL', mL’, s)-net in base b. We consider two cases:

1. Assume that tal’ + @ < Boml'. Then by Theorem 3.10 the multiset given in Eq. (22)is a (t, «, g om, m, s)-net in
base bY', Furthermore, tarl’ + @ < Boml’ implies that t < Lgamj.

2. Assume that foml < tal + @
(Lgamj, a, &, om, m, s)-net in base b". Furthermore, BomL’ < tal + @ implies that Lgomj <t

S o

. According to Remark 1.2, the multiset given in Eq. (22) forms a

Hence the multiset given in Eq. (22) is a (min(t, Lgomj), a, £, om, m, s)-net in base b". We conclude that for all m such

5
that gom > t we obtain a (¢, &, £, om, m, s)-net in base b and therefore a (¢, «, g o, s)-sequence in base b*'. O

LRV}



J. Baldeaux et al. / Discrete Mathematics 311 (2011) 362-386 385
4.4. An explicit bound for ty(c, s) for prime powers b
In this subsection the least value t such that there exists a (t, «, 8, 0, S)-sequence in base b is studied.

Definition 4.1. For integersb > 2,5 > 1, o > 1, let t,(«, s) denote the least value t such that there exists a (t, «, 8, 7, 5)-
sequence in base b with @ = fo.

Remark 4.2. In [6, Definition 6] the analogous quantity for the digital case has been introduced: Let b be a prime power,
then dp(«r, 5) denotes the smallest value of t such that there exists a digital (t, «, 8, o, s)-sequence over the finite field I,
with ¢ = Bo.

In this case it is known (see [6, Theorem 7]) that for alls > 1 and & > 2 we have

a(a—1)
37

-1
—a<dq(a,s)§sa2—c +a+aLs(a )J,
2 logq

2

where ¢ > 0 is an absolute constant. Note that these bounds also apply to (nondigital) (¢, «, 8, o, s)-sequences where
o = fio.

The following corollary follows from Theorems 4.2 and 4.3. Setting « = 8 = o = 1 and making use of Theorems 4.2 and
4.4, we could even recover [13, Corollary 4].

Corollary 4.2. For all integersb > 2,s > 1, > 1, « = Bo, we have

by, s) — (st — 14 Bo)(L— 1) ty(aL, s) — “‘Z”L-‘

L

S tbL(avs) 5 ’V Lz

The next theorem provides an explicit bound for t,(«, s) for prime powers b. Setting @ = 8 = o = 1, this result
recovers [ 13, Proposition 6].

Theorem 4.5. For every prime power b, we have

2bsa? ba3/251/2 {s(a -1

th(ct, 5) < —2
b(@8) < T T e 2

J+sa—1+a.

Proof. We use Theorem 4.2 with L = 2 to obtain
tp(a, 5) < 2tp2(ax, 5) + (s — 1+ @).

By Corollary 4.1, where we set d = «,

s(a—1)
t2(a, s) < atp (1, sa) + o {ZJ s

where t;2 (1, ser) corresponds to the least value t such that there exists a (t, sor)-sequence in base b?. From [13, Theorem 5]
we obtain

bsa b(sa)'/?
b—1 (b2— 112

and the result follows. O

tbz(l, Sa) <
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