4 research outputs found

    Setup-optimised Dispatching At Work Systems With Pallet Changers

    Get PDF
    Setup-optimised dispatching at work systems is the subject of many investigations and studies. The considerations range from developing corresponding heuristics and analysing their effects on achieving logistical objectives to practice-oriented models for estimating the impact of a specific dispatching procedure. However, despite a large number of investigations, there is still a lack of methods that consider the special characteristics of work systems with so-called pallet changers to increase the desired productivity of the machines in the best possible way. Thus, existing approaches do not consider that, in contrast to conventional work systems, a large part of the setup efforts are carried out externally, i.e., parallel with the main processing time, and focus the directly preceding (internal) setup activity at the work system. Therefore, this paper presents a simple heuristic approach that considers the specifics of work systems with pallet changers. To show the power of the invented Pallet Changer Sequence Optimising (PSCO) rule, it is compared with an adaptation of the Minimum Marginal Setup Time (MMS) rule and the First Come First-Served (FCFS) rule. Using the tool of simulation, it is demonstrated that the developed rule clearly outperforms the MMS rule both in the area of productivity and the area of deviation of throughput times as a measure of the scheduling behaviour of the work system. The contribution thus represents a starting point for further research and optimisation of heuristics for complex machines (like CNC milling machines). It provides essential findings for practice since productivity losses on these comparatively very capital-intensive machines are particularly significant for cost-effective production

    Dynamic allocation of operators in a hybrid human-machine 4.0 context

    Get PDF
    La transformation numérique et le mouvement « industrie 4.0 » reposent sur des concepts tels que l'intégration et l'interconnexion des systèmes utilisant des données en temps réel. Dans le secteur manufacturier, un nouveau paradigme d'allocation dynamique des ressources humaines devient alors possible. Plutôt qu'une allocation statique des opérateurs aux machines, nous proposons d'affecter directement les opérateurs aux différentes tâches qui nécessitent encore une intervention humaine dans une usine majoritairement automatisée. Nous montrons les avantages de ce nouveau paradigme avec des expériences réalisées à l'aide d'un modèle de simulation à événements discrets. Un modèle d'optimisation qui utilise des données industrielles en temps réel et produit une allocation optimale des tâches est également développé. Nous montrons que l'allocation dynamique des ressources humaines est plus performante qu'une allocation statique. L'allocation dynamique permet une augmentation de 30% de la quantité de pièces produites durant une semaine de production. De plus, le modèle d'optimisation utilisé dans le cadre de l'approche d'allocation dynamique mène à des plans de production horaire qui réduisent les retards de production causés par les opérateurs de 76 % par rapport à l'approche d'allocation statique. Le design d'un système pour l'implantation de ce projet de nature 4.0 utilisant des données en temps réel dans le secteur manufacturier est proposé.The Industry 4.0 movement is based on concepts such as the integration and interconnexion of systems using real-time data. In the manufacturing sector, a new dynamic allocation paradigm of human resources then becomes possible. Instead of a static allocation of operators to machines, we propose to allocate the operators directly to the different tasks that still require human intervention in a mostly automated factory. We show the benefits of this new paradigm with experiments performed on a discrete-event simulation model based on an industrial partner's system. An optimization model that uses real-time industrial data and produces an optimal task allocation plan that can be used in real time is also developed. We show that the dynamic allocation of human resources outperforms a static allocation, even with standard operator training levels. With discrete-event simulation, we show that dynamic allocation leads to a 30% increase in the quantity of parts produced. Additionally, the optimization model used under the dynamic allocation approach produces hourly production plans that decrease production delays caused by human operators by up to 76% compared to the static allocation approach. An implementation system for this 4.0 project using real-time data in the manufacturing sector is furthermore proposed
    corecore