7,655 research outputs found

    Design tradeoffs for simplicity and efficient verification in the Execution Migration Machine

    Get PDF
    As transistor technology continues to scale, the architecture community has experienced exponential growth in design complexity and significantly increasing implementation and verification costs. Moreover, Moore's law has led to a ubiquitous trend of an increasing number of cores on a single chip. Often, these large-core-count chips provide a shared memory abstraction via directories and coherence protocols, which have become notoriously error-prone and difficult to verify because of subtle data races and state space explosion. Although a very simple hardware shared memory implementation can be achieved by simply not allowing ad-hoc data replication and relying on remote accesses for remotely cached data (i.e., requiring no directories or coherence protocols), such remote-access-based directoryless architectures cannot take advantage of any data locality, and therefore suffer in both performance and energy. Our recently taped-out 110-core shared-memory processor, the Execution Migration Machine (EM[superscript 2]), establishes a new design point. On the one hand, EM[superscript 2] supports shared memory but does not automatically replicate data, and thus preserves the simplicity of directoryless architectures. On the other hand, it significantly improves performance and energy over remote-access-only designs by exploiting data locality at remote cores via fast hardware-level thread migration. In this paper, we describe the design choices made in the EM[superscript 2] chip as well as our choice of design methodology, and discuss how they combine to achieve design simplicity and verification efficiency. Even though EM[superscript 2] is a fairly large design-110 cores using a total of 357 million transistors-the entire chip design and implementation process (RTL, verification, physical design, tapeout) took only 18 man-months

    POOR MAN’S TRACE CACHE: A VARIABLE DELAY SLOT ARCHITECTURE

    Get PDF
    We introduce a novel fetch architecture called Poor Man’s Trace Cache (PMTC). PMTC constructs taken-path instruction traces via instruction replication in static code and inserts them after unconditional direct and select conditional direct control transfer instructions. These traces extend to the end of the cache line. Since available space for trace insertion may vary by the position of the control transfer instruction within the line, we refer to these fetch slots as variable delay slots. This approach ensures traces are fetched along with the control transfer instruction that initiated the trace. Branch, jump and return instruction semantics as well as the fetch unit are modified to utilize traces in delay slots. PMTC yields the following benefits: 1. Average fetch bandwidth increases as the front end can fetch across taken control transfer instructions in a single cycle. 2. The dynamic number of instruction cache lines fetched by the processor is reduced as multiple non contiguous basic blocks along a given path are encountered in one fetch cycle. 3. Replication of a branch instruction along multiple paths provides path separability for branches, which positively impacts branch prediction accuracy. PMTC mechanism requires minimal modifications to the processor’s fetch unit and the trace insertion algorithm can easily be implemented within the assembler without compiler support

    The Economic Resource Receipt of New Mothers

    Get PDF
    U.S. federal policies do not provide a universal social safety net of economic support for women during pregnancy or the immediate postpartum period but assume that employment and/or marriage will protect families from poverty. Yet even mothers with considerable human and marital capital may experience disruptions in employment, earnings, and family socioeconomic status postbirth. We use the National Survey of Families and Households to examine the economic resources that mothers with children ages 2 and younger receive postbirth, including employment, spouses, extended family and social network support, and public assistance. Results show that many new mothers receive resources postbirth. Marriage or postbirth employment does not protect new mothers and their families from poverty, but education, race, and the receipt of economic supports from social networks do

    Application-aware Performance Optimization for Software Managed Manycore Architectures

    Get PDF
    abstract: One of the main goals of computer architecture design is to improve performance without much increase in the power consumption. It cannot be achieved by adding increasingly complex intelligent schemes in the hardware, since they will become increasingly less power-efficient. Therefore, parallelism comes up as the solution. In fact, the irrevocable trend of computer design in near future is still to keep increasing the number of cores while reducing the operating frequency. However, it is not easy to scale number of cores. One important challenge is that existing cores consume too much power. Another challenge is that cache-based memory hierarchy poses a serious limitation due to the rapidly increasing demand of area and power for coherence maintenance. In this dissertation, opportunities to resolve the aforementioned issues were explored in two aspects. Firstly, the possibility of removing hardware cache altogether, and replacing it with scratchpad memory with software management was explored. Scratchpad memory consumes much less power than caches. However, as data management logic is completely shifted to Software, how to reduce software overhead is challenging. This thesis presents techniques to manage scratchpad memory judiciously by exploiting application semantics and knowledge of data access patterns, thereby enabling optimization of data movement across the memory hierarchy. Experimental results show that the optimization was able to reduce stack data management overhead by 13X, produce better code mapping in more than 80% of the case, and improve performance by 83% in heap management. Secondly, the possibility of using software branch hinting to replace hardware branch prediction to completely eliminate power consumption on corresponding hardware components was explored. As branch predictor is removed from hardware, software logic is responsible for reducing branch penalty. Techniques to minimize the branch penalty by optimizing branch hint placement were proposed, which can reduce branch penalty by 35.4% over the state-of-the-art.Dissertation/ThesisDoctoral Dissertation Computer Science 201
    • …
    corecore