630 research outputs found

    Beampattern Design for Transmit Architectures Based on Reconfigurable Intelligent Surfaces

    Full text link
    In this work, we consider a transmit architecture where few active antennas (sources), each equipped with a dedicated radio frequency chain, illuminate a reconfigurable intelligent surface (RIS) that control the beam-steering capability of the whole system. In this framework, we tackle the beampattern design problem, where the waveform emitted by the sources and the phase shifts introduced by the RIS are designed so that the realized beampattern matches, in a least-square sense, the desired one. The design of this architecture can be useful in many areas, such as radar detection and tracking, millimeter wave, sub-THz, and THz communications, and integrated sensing and communications. We provide a sub-optimum solution to the beampattern design problem, and we report an example to show that this RIS-based transmit architecture can be competitive with respect to fully-digital MIMO systems, especially if constant-modulus waveforms are required.Comment: Submitted for possible publication to IEEE Transactions on Signal Processin

    Hybrid Transceiver Optimization for Multi-Hop Communications

    Full text link
    Multi-hop communication with the aid of large-scale antenna arrays will play a vital role in future emergence communication systems. In this paper, we investigate amplify-and-forward based and multiple-input multiple-output assisted multi-hop communication, in which all nodes employ hybrid transceivers. Moreover, channel errors are taken into account in our hybrid transceiver design. Based on the matrix-monotonic optimization framework, the optimal structures of the robust hybrid transceivers are derived. By utilizing these optimal structures, the optimizations of analog transceivers and digital transceivers can be separated without loss of optimality. This fact greatly simplifies the joint optimization of analog and digital transceivers. Since the optimization of analog transceivers under unit-modulus constraints is non-convex, a projection type algorithm is proposed for analog transceiver optimization to overcome this difficulty. Based on the derived analog transceivers, the optimal digital transceivers can then be derived using matrix-monotonic optimization. Numeral results obtained demonstrate the performance advantages of the proposed hybrid transceiver designs over other existing solutions.Comment: 32 pages, 6 figures. This manuscript has been submitted to IEEE Journal on Selected Areas in Communications (special issue on Multiple Antenna Technologies for Beyond 5G

    Full-Duplex Wireless for 6G: Progress Brings New Opportunities and Challenges

    Full text link
    The use of in-band full-duplex (FD) enables nodes to simultaneously transmit and receive on the same frequency band, which challenges the traditional assumption in wireless network design. The full-duplex capability enhances spectral efficiency and decreases latency, which are two key drivers pushing the performance expectations of next-generation mobile networks. In less than ten years, in-band FD has advanced from being demonstrated in research labs to being implemented in standards and products, presenting new opportunities to utilize its foundational concepts. Some of the most significant opportunities include using FD to enable wireless networks to sense the physical environment, integrate sensing and communication applications, develop integrated access and backhaul solutions, and work with smart signal propagation environments powered by reconfigurable intelligent surfaces. However, these new opportunities also come with new challenges for large-scale commercial deployment of FD technology, such as managing self-interference, combating cross-link interference in multi-cell networks, and coexistence of dynamic time division duplex, subband FD and FD networks.Comment: 21 pages, 15 figures, accepted to an IEEE Journa

    Antenna Array Enabled Space/Air/Ground Communications and Networking for 6G

    Get PDF
    Antenna arrays have a long history of more than 100 years and have evolved closely with the development of electronic and information technologies, playing an indispensable role in wireless communications and radar. With the rapid development of electronic and information technologies, the demand for all-time, all-domain, and full-space network services has exploded, and new communication requirements have been put forward on various space/air/ground platforms. To meet the ever increasing requirements of the future sixth generation (6G) wireless communications, such as high capacity, wide coverage, low latency, and strong robustness, it is promising to employ different types of antenna arrays with various beamforming technologies in space/air/ground communication networks, bringing in advantages such as considerable antenna gains, multiplexing gains, and diversity gains. However, enabling antenna array for space/air/ground communication networks poses specific, distinctive and tricky challenges, which has aroused extensive research attention. This paper aims to overview the field of antenna array enabled space/air/ground communications and networking. The technical potentials and challenges of antenna array enabled space/air/ground communications and networking are presented first. Subsequently, the antenna array structures and designs are discussed. We then discuss various emerging technologies facilitated by antenna arrays to meet the new communication requirements of space/air/ground communication systems. Enabled by these emerging technologies, the distinct characteristics, challenges, and solutions for space communications, airborne communications, and ground communications are reviewed. Finally, we present promising directions for future research in antenna array enabled space/air/ground communications and networking

    Beam division multiple access for millimeter wave massive MIMO: Hybrid zero-forcing beamforming with user selection

    Get PDF
    Massive multiple-input multiple-output (MIMO) systems are considered a promising solution to minimize multiuser interference (MUI) based on simple precoding techniques with a massive antenna array at a base station (BS). This paper presents a novel approach of beam division multiple access (BDMA) which BS transmit signals to multiusers at the same time via different beams based on hybrid beamforming and user-beam schedule. With the selection of users whose steering vectors are orthogonal to each other, interference between users is significantly improved. While, the efficiency spectrum of proposed scheme reaches to the performance of fully digital solutions, the multiuser interference is considerably reduced

    A Survey of Beam Management for mmWave and THz Communications Towards 6G

    Full text link
    Communication in millimeter wave (mmWave) and even terahertz (THz) frequency bands is ushering in a new era of wireless communications. Beam management, namely initial access and beam tracking, has been recognized as an essential technique to ensure robust mmWave/THz communications, especially for mobile scenarios. However, narrow beams at higher carrier frequency lead to huge beam measurement overhead, which has a negative impact on beam acquisition and tracking. In addition, the beam management process is further complicated by the fluctuation of mmWave/THz channels, the random movement patterns of users, and the dynamic changes in the environment. For mmWave and THz communications toward 6G, we have witnessed a substantial increase in research and industrial attention on artificial intelligence (AI), reconfigurable intelligent surface (RIS), and integrated sensing and communications (ISAC). The introduction of these enabling technologies presents both open opportunities and unique challenges for beam management. In this paper, we present a comprehensive survey on mmWave and THz beam management. Further, we give some insights on technical challenges and future research directions in this promising area.Comment: accepted by IEEE Communications Surveys & Tutorial
    • …
    corecore